CUDA网格限制】的更多相关文章

限制于计算能力有关. 详情 http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities 只有一张图~…
如图…
CUDA基本概念 CUDA网格限制 1.2CPU和GPU的设计区别 2.1CUDA-Thread 2.2CUDA-Memory(存储)和bank-conflict 2.3CUDA矩阵乘法 3.1 全局存储带宽与合并访问 -- Global Memory(DRAM) bandwidth and memory coalesce 3.2 卷积 3.3分析卷积乘法优化的复用 4.1Reduction模型 4.2 CUDA Reduction 一步一步优化 4.3 Reduction代码(Heteroge…
编写HSA内核 介绍 HSA提供类似于OpenCL的执行模型.指令由一组硬件线程并行执行.在某种程度上,这类似于 单指令多数据(SIMD)模型,但具有这样的便利:细粒度调度对于程序员而言是隐藏的,而不是使用SIMD向量作为数据结构进行编程.在HSA中,编写的代码将同时由多个线程(通常成百上千个)执行.解决方案将通过定义网格,工作组 和工作项的线程层次结构进行建模. Numba的HSA支持提供了用于声明和管理此线程层次结构的工具. CUDA程序简介 HSA执行模型类似于CUDA.HSA在ROC G…
网格(Grid).线程块(Block)和线程(Thread)的组织关系 CUDA的软件架构由网格(Grid).线程块(Block)和线程(Thread)组成,相当于把GPU上的计算单元分为若干(2~3)个网格,每个网格内包含若干(65535)个线程块,每个线程块包含若干(512)个线程,三者的关系如下图: Thread,block,grid是CUDA编程上的概念,为了方便程序员软件设计,组织线程. thread:一个CUDA的并行程序会被以许多个threads来执行. block:数个threa…
GPU的硬件结构,也不是具体的硬件结构,就是与CUDA相关的几个概念:thread,block,grid,warp,sp,sm. sp: 最基本的处理单元,streaming processor  最后具体的指令和任务都是在sp上处理的.GPU进行并行计算,也就是很多个sp同时做处理 sm:多个sp加上其他的一些资源组成一个sm,  streaming multiprocessor. 其他资源也就是存储资源,共享内存,寄储器等. warp:GPU执行程序时的调度单位,目前cuda的warp的大小…
一.与CUDA相关的几个概念:thread,block,grid,warp,sp,sm. sp: 最基本的处理单元,streaming processor  最后具体的指令和任务都是在sp上处理的.GPU进行并行计算,也就是很多个sp同时做处理 sm:多个sp加上其他的一些资源组成一个sm,  streaming multiprocessor. 其他资源也就是存储资源,共享内存,寄储器等. warp:GPU执行程序时的调度单位,目前cuda的warp的大小为32,同在一个warp的线程,以不同数…
又是一枚祖国的骚年,阅览做做笔记:http://www.cnblogs.com/neopenx/p/4643705.html 这里只是一些基础知识.帮助理解DL tool的实现. “这也是深度学习带来的一个全新领域,它要求研究者不仅要理论强,建模强,程序设计能力也要过硬,不能纸上谈兵.” CUDA的广泛应用造就了GPU计算专用Tesla GPU的崛起. 随着显卡的发展,GPU越来越强大,而且GPU为显示图像做了优化.在计算上已经超越了通用的CPU.如此强大的芯片如果只是作为显卡就太浪费了,因此N…
为什么需要GPU 几年前我启动并主导了一个项目,当时还在谷歌,这个项目叫谷歌大脑.该项目利用谷歌的计算基础设施来构建神经网络. 规模大概比之前的神经网络扩大了一百倍,我们的方法是用约一千台电脑.这确实使深度学习取得了相当大的进展.用到相当多的 计算机.不久之后我发现,之前我并没意识到,用一千台电脑是一项非常昂贵的技术.因此,我和我的朋友,意识到,利用一种 不同的技术,仅用三台电脑,而非一千台,就可以做到这点,而秘诀就是利用GPU技术. ---Andrew Ng [The Big Talk:深度学…
转自: http://blog.csdn.net/augusdi/article/details/12529247 CUDA编程模型 CUDA编程模型将CPU作为主机,GPU作为协处理器(co-processor)或设备.在这个模型中,CPU负责逻辑性强的事务处理和串行计算,GPU则专注于高度线程化的并行处理任务.CPU.GPU各自拥有相互独立的存储器地址空间. 一旦确定了程序中的并行部分,就可以考虑把这部分计算工作交给GPU. kernel:运行在GPU上的C函数称为kernel.一个kern…