uva 10054 The Necklac(欧拉回路)】的更多相关文章

明显的欧拉回路,把颜色作为点,建图后,做一遍欧拉回路.不过我是现学的,打印路径上纠结了一下,发现随着FindEuler()的递归调用的结束,不断把点压入栈中,从后向前打印,遇到"支路"会先处理好支路再继续的.这样就可以顺序打印路径了.如果是直接打印或放在队列里,会发现打印出来的项链的关系正好相反,即前一行的第一个与本行的第二个颜色相同. 邻接表又开小了,MAXN<<1 .还有就是用STL的栈TLE了,还是手写吧= = #include<stdio.h> #inc…
有n个珠子,每颗珠子有左右两边两种颜色,颜色有1~50种,问你能不能把这些珠子按照相接的地方颜色相同串成一个环. 可以认为有50个点,用n条边它们相连,问你能不能找出包含所有边的欧拉回路 首先判断是否在一个联通分量中,在判断是否存在欧拉回路,最后输出欧拉回路. #include <stdio.h> #include <string.h> ; <<; int mx,mn,p[maxn],d[maxn],G[maxn][maxn]; int find(int x) { re…
https://vjudge.net/problem/UVA-10054 题意:有一种由彩色珠子连接成的项链.每个珠子的两半由不同颜色组成.相邻两个珠子在接触的地方颜色相同.现在有一些零碎的珠子,需要确认它们是否可以复原成完整的项链. 思路: 每种颜色看成一个结点,每个珠子的两半连一条有向边,这样就是欧拉回路的问题了. 最重要的一点,欧拉回路的输出一定逆序输出. #include<iostream> #include<algorithm> #include<string>…
题目链接:https://uva.onlinejudge.org/external/100/10054.pdf 题目链接:http://vjudge.net/contest/132239#problem/C 欧拉回路公式: 1.图是连通的. 2.所有点的度都是偶数. tip: 网上有很多解法,几乎都是一样,由于UVa的数据都是连通的,几乎都没有判连通. #include <stdio.h> #include <string.h> #include <bits/stdc++.h…
题目链接: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=995 Problem D: The Necklace  My little sister had a beautiful necklace made of colorful beads. Two successive beads in the necklace shared a c…
看是否有欧拉回路 有的话打印路径 欧拉回路存在的条件: 如果是有向图的话 1.底图必须是连通图 2.最多有两个点的入度不等于出度 且一个点的入度=出度+1 一个点的入度=出度-1 如果是无向图的话 1.如果这个无向图的连通的 当最多只有两个度数为奇数的点 就一定有欧拉回路 当有两个度数为奇数的点的时候 一个为起点 一个为终点 //============================================================================ // Name…
题目:这里 题意:有一种由彩色珠子连接而成的项链,每个珠子两半由不同颜色(由1到50的数字表示颜色)组成,相邻的两个珠子在接触的地方颜色相同,现在有一些零碎的珠子,确认它是否能 复原成完整的项链. 把每种颜色看成一个结点,每个珠子的两半连成一条有向边,就成了判断一个欧拉回路了,而输出回路路线可以用dfs,逆序输出,因为顺序输出的时候,由于可能会有一个结点上多 条边的情况,dfs的时候可能一开始会找到错误的路线再回溯回去,顺序输出就把这段错误的路线也输出了. #include<cstdio> #…
将每个颜色看成一个顶点,对于每个珠子在两个颜色之间连一条无向边,然后求欧拉回路. #include <cstdio> #include <cstring> + ; int G[maxn][maxn], deg[maxn]; void Euler(int u) { ; v <= ; v++) if(G[u][v]) { G[u][v]--; G[v][u]--; Euler(v); printf("%d %d\n", v, u); } } int main(…
昨天做了道水题,今天这题是比较水的应用. 给出n个项链的珠子,珠子的两端有两种颜色,项链上相邻的珠子要颜色匹配,判断能不能拼凑成一天项链. 是挺水的,但是一开始我把整个项链看成一个点,然后用dfs去找,结果超时了. 后来瞄了一眼题解发现把颜色当成点,一个珠子就是一条路,这样就能得到一个无向图了,然后判断欧拉回路即可. 这题默认是珠子为连通的,所以不需要判断连通性.然后判断节点的度数是否为偶数,也就是是否为欧拉回路,如果是的话用深搜输出珠子的顺序.深搜时输出记得得放在递归之后,用逆序输出,不然会出…
题意:给出n个珠子,珠子颜色分为两半,分别用1到50之间的数字表示, 现在给出n个珠子分别的颜色,问是否能够串成一个环.即为首尾相连,成为一个回路 判断是否构成一个环,即判断是否为欧拉回路,只需要判断度数是不是偶数就可以了 (这道题目给出的珠子是在一个连通块上的,所以不用考虑连通) 然后输出结果要逆序输出,见这一篇,非常的详细 http://www.cnblogs.com/scau20110726/archive/2012/11/09/2762371.html #include<iostream…
算法指南 主要就是建立欧拉回路 #include <stdio.h> #include <string.h> #include <iostream> #include <algorithm> #include <vector> #include <queue> #include <set> #include <map> #include <string> #include <math.h>…
The Necklace  My little sister had a beautiful necklace made of colorful beads. Two successive beads in the necklace shared a common color at their meeting point. The figure below shows a segment of the necklace: But, alas! One day, the necklace was…
My little sister had a beautiful necklace made of colorful beads. Two successive beads in the necklace shared a common color at their meeting point. The figure below shows a segment of the necklace: But, alas! One day, the necklace was torn and the b…
题目分析:1.无向图欧拉回路是否连通2.所有点的度为偶数.并查集+degree 这题题目保证了是联通的  所以就不用判断是否联通了 #include <iostream> #include <cstdio> #include <sstream> #include <cstring> #include <map> #include <set> #include <vector> #include <stack>…
题目大意: 一个环被切割成了n个小块,每个小块有头尾两个关键字,表示颜色. 目标是判断给出的n个小块能否重构成环,能则输出一种可行解(按重构次序输出n个色块的头尾颜色).反之输出“some beads may be lost”. 解题思路: 一开始想的曼哈顿回路,WA了.后来依靠别人的智慧,知道正解是欧拉回路. 在知道这道题是欧拉回路的情况下就变得很简单了,就是一道模板题……每种颜色看成一个点,每个小块代表两点之间连接的边,如果存在欧拉回路就有可行解. 不存在欧拉回路有两种情况:1.图不连通,2…
本文链接:http://www.cnblogs.com/Ash-ly/p/5405904.html 题意: 妹妹有一条项链,这条项链由许多珠子串在一起组成,珠子是彩色的,两个连续的珠子的交汇点颜色相同,也就是对于相邻的两个珠子来说,前一个珠子的末端颜色和后一个珠子的首端颜色相同.有一天,项链断了,珠子洒落了一地,到处都是,妹妹使出浑身解数把地板上能看到的珠子(5-1000)都捡了起来,但是不确定是否收集齐了.给你他妹妹收集的珠子的两端的颜色编号(1 - 50),让你判断是否收集齐了. 思路: 把…
题意比较简单,给你n个项链碎片,每个碎片的两半各有一种颜色,最后要把这n个碎片串成一个项链,要求就是相邻碎片必须是同种颜色挨着. 看了下碎片总共有1000个,颜色有50种,瞬间觉得普通方法是无法在可控时间内做出来的,因为碎片到底放哪里以及是正着放还是反着放都是不可控的. 这个时候数学建模就真的好重要了,如果我们能把颜色作为节点,一个碎片就表示两个节点连了一条路,那其实就是走了一遍欧拉回路,就意味着项链做成了. 太叼了,这个思想真心不错...LRJ书上的提示,否则我还真是想不到可以这样. 不过还有…
题目链接 题目大意:我的妹妹有一串由各种颜色组成的项链. 项链中两个连续珠子的接头处共享同一个颜色. 如上图, 第一个珠子是green+red, 那么接这个珠子的必须以red开头,如图的red+white.噢!天啊! 一天, 项链项链被扯断了,珠子掉落了一地.我的妹妹竭尽全力的把珠子一个个捡起来, 但是她不确定是否全部捡回来了. 现在,她叫我帮忙. 她想知道是否可能把这些珠子全部连接起来, 连接的方法和项链原来的方法一样.请帮我写一个程序解决这个问题. #include<bits/stdc++.…
这场比赛可以说是灰常的水了,涨信心场?? 今下午义务劳动,去拿着锄头发了将近一小时呆,发现自己实在是干不了什么,就跑到实验室打比赛了~ 之前的比赛补题补了这么久连一场完整的都没补完,结果这场比完后一小时连题解都出来了··· A-烤肉拌饭 ( uva 572) 就是求联通块的数量啊,刚学dfs的时候做的那种! #include <cstdio> #include <algorithm> #include <cstring> #include <iostream>…
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1070 题意是输入n个单词,是否可以把所有这些单词排成一个序列,使得每个单词的第一个字母和上一个单词的最后一个字母相同.输入中可以有重复单词. 由于最后只需要判断是否能排成这样的一个序列,所以没有输入单词后,只需要把首尾字母保存下来,然后可以dfs深度递归.由于可能会有重复单词,在这里可以设…
题目给出图,要求判断不能一遍走完所有边,也就是无向图,题目分类是分欧拉回路,但其实只要判断度数就行了. 一开始以为只要判断度数就可以了,交了一发WA了.听别人说要先判断是否是联通图,于是用并查集并一起,然后判断是否有多个根. 用dfs的话就是深搜时标记下,最后看看有没有全部标记.我没用dfs做. 代码: #include <cstdio> const int maxn = 201; int f[maxn]; int d[maxn]; int find(int x) { if (x != f[x…
完全就是哭瞎的节奏···QAQ 又是图论··· 题意:有一种项链,每个珠子上有两种颜色,相同颜色的两颗珠子的两头相连,如果能连成环输出珠子的顺序,不能连成环输出"some beads may be lost". 解法:DFS.将颜色看做点,珠子看做边,转化为欧拉回路问题.欧拉回路每个点的入度和出度和都是偶数.对颜色做DFS.加上回溯会T,不加度数判断会WA-- 代码: #include<stdio.h> #include<iostream> #include&l…
跟Uva 10054很像,不过这题的单词是不能反向的,所以是有向图,判断欧拉道路. 关于欧拉道路(from Titanium大神): 判断有向图是否有欧拉路 1.判断有向图的基图(即有向图转化为无向图)连通性,用简单的DFS即可.如果图都不连通,一定不存在欧拉路 2.在条件1的基础上   对于欧拉回路,要求苛刻一点,所有点的入度都要等于出度,那么就存在欧拉回路了   对于欧拉道路,要求松一点,只有一个点,出度比入度大1,这个点一定是起点: 一个点,入度比出度大1,这个点一定是终点.其余点的出度等…
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3270 2017年的第一题. 题意:给出必须要经过的边,找一条经过所有边的最短道路. 一开始一点想法都没有,后来网上看了下才明白是要用dfs和欧拉回路来做的. 欧拉回路是这样说的:如果一个无向图是连通的,且最多只有两个奇点,则一定存在欧拉道路.如果有两个奇点,则必须从其中一个奇点出发,另一个…
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1676 题意: 给出一个V个点和E条边(1≤V≤100,1≤E≤500)的混合图(即有的边是无向边,有的边是有向边),试求出它的一条欧拉回路,如果没有,输出无解信息.输入保证在忽略边的方向之后图是连通的. 分析: 很多混合图问题(例如,混合图的最短路)都可以转化为有向图问题,方法是把…
这道题写了两个多小时-- 首先讲一下怎么建模 我们的目的是让所有点的出度等于入度 那么我们可以把点分为两部分, 一部分出度大于入度, 一部分入度大于出度 那么显然, 按照书里的思路,将边方向后,就相当于从出度大于入度的运一个流量到 入度大于出度的点. 紫书 例题 11-13 UVa 10735(混合图的欧拉回路)(最大流) 所以我们可以把源点S到所有出度大于入度的点连一条弧, 弧的容量是出度-入度的一半 为什么容量是这样呢,等一下说 同理, 把所有入度大于出度的点和汇点T连一条弧, 弧的容量是入…
题意: 给出一个图,有的边是有向边,有的是无向边.试找出一条欧拉回路. 分析: 按照往常的思维,遇到混合图,我们一般会把无向边拆成两条方向相反的有向边. 但是在这里却行不通了,因为拆成两条有向边的话,就表示这个边能“在两个相反方向各经过一次”. 而题意是这个边只能经过一次. 假设图中存在欧拉回路,则所有点的出度out(i) 等于 入度in(i) 不妨这样,先将所有的无向边任意定向,对于out(u) > in(u)的点,可以将已经定向的无向边u->v反向为v->u,这样out(u) - i…
题意:给一个图,图中有部分是向边,部分是无向边,要求判断是否存在欧拉回路,若存在,输出路径. 分析:欧拉回路的定义是,从某个点出发,每条边经过一次之后恰好回到出发点. 无向边同样只能走一次,只是不限制方向而已,那么这个情况下就不能拆边.不妨先按照所给的start和end的顺序,初步定下该无向边的顺序(若不当,一会再改).那么有个问题,我们需要先判断其是否存在欧拉回路先. 混合图不满足欧拉回路因素有:(1)一个点的度(无论有无向)是奇数的,那么其肯定不能满足出边数等于入边数.(2)有向边的出入度过…
2.解题思路:本题利用欧拉回路存在条件解决.可以将所有的单词看做边,26个字母看做端点,那么本题其实就是问是否存在一条路径,可以到达所有出现过的字符端点.由于本题还要求了两个单词拼在一起的条件是前一个单词的右端点和本单词的左端点一样.所以这是一个有向图.根据结论:有向图的底图(忽略边的方向后的图)必须连通:有向图中最多只能有两个端点的入度不等于出度,且必须是其中一点的入度比出度小1,另一点的入度比出度大1.因此先判断端点是否都连通,再判断每个端点的度数是否满足结论即可. 那么,如何判断连通性呢?…
思路: 分别存下每个字符串的首尾字符,以字符为结点,单词看作一条变,就变成了求欧拉回路了,先判断下图是否连通,然后根据欧拉回路的结论:最多只能有两个点的入读不等于初读,而且必须是一个点的出度恰好比入度大1(将它作为起点),另一个的入度比出度大1(将它作为终点): 实现代码: #include<iostream> #include<cstring> using namespace std; ; int f[M]; int in[M],out[M]; int fd(int x) {re…