(一)答题表格设计与识别 实际设计好的表格如下图 为了图像精确,表格和四角的标记都是由程序生成的,文字和数据是后期排版软件添加上去的. 图中四角的四个黑方块主要用来定位表格,然后就可以切割出每个单元格,最后去做字符识别. 具体步骤为: 1,灰度化并二值化; 2,查找轮廓,把找出四个定位标记; 3,透视变换,校正变形; 4,切割表格,分别识别每个表格; 实际操作中发现最关键的是表格一定要平整,变形对识别影响较大; 部分代码: int table_recognition(IplImage* img,…
opencv 手写选择题阅卷 (二)字符识别 选择题基本上只需要识别ABCD和空五个内容,理论上应该识别率比较高的,识别代码参考了网上搜索的代码,因为参考的网址比较多,现在也弄不清是参考何处的代码了,在这里就不一一感谢了. 基本步骤: 一,识别函数接受一般64X64的灰度图像; 二,二值化并反色为黑底白字; 三,找出字符的最小包围矩形,并大小归一化为32X32; 四,计算图像的HOG特征; 五,用SVM分类器对HOG特征进行识别,从而确定当前图像属于ABCD还是空白; 整个识别代码还是比较简单的…
opencv 手写选择题阅卷 (四)Android 手机应用开发 在PC端把代码调通以后开始开发Android 手机应用,因为主要功能代码为C++代码,所以需要通过NDK编译,JAVA通过JNI方式调用C++代码,好在opencv已经把android 下的库都编译好了,只需要连接就可以了,Android.mk文件内容如下: LOCAL_PATH := $(call my-dir) include $(CLEAR_VARS) #OPENCV_CAMERA_MODULES:=offOPENCV_IN…
opencv 手写选择题阅卷 (三)训练分类器 1,分类器选择:SVM 本来一开始用的KNN分类器,但这个分类器目前没有实现保存训练数据的功能,所以选择了SVN分类器; 2,样本图像的预处理和特征提取代码与识别代码中使用一样的代码. 3,训练时的输入数据主要为两个矩阵,一个矩阵保存所有样本的特征数据,每一行一个图像,另一个矩阵保存每个样本所属的类别,比如 1.0代表A,2.0代表B,0代表空白. 4,所有样本分别保存在5个文件夹中(一个是空白,四个字母ABCD),用批处理生成一个文本文件包括所有…
摘要 本程序主要参照论文,<基于OpenCV的脱机手写字符识别技术>实现了,对于手写阿拉伯数字的识别工作.识别工作分为三大步骤:预处理,特征提取,分类识别.预处理过程主要找到图像的ROI部分子图像并进行大小的归一化处理,特征提取将图像转化为特征向量,分类识别采用k-近邻分类方法进行分类处理,最后根据分类结果完成识别工作. 程序采用Microsoft Visual Studio 2010与OpenCV2.4.4在Windows 7-64位旗舰版系统下开发完成.并在Windows xp-32位系统…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # number 1 to 10 data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) def add_layer(inputs, in_size, out_size, activation_function=None,): # add one more…
AI应用开发实战 - 手写识别应用入门 手写体识别的应用已经非常流行了,如输入法,图片中的文字识别等.但对于大多数开发人员来说,如何实现这样的一个应用,还是会感觉无从下手.本文从简单的MNIST训练出来的模型开始,和大家一起入门手写体识别. 在本教程结束后,会得到一个能用的AI应用,也许是你的第一个AI应用.虽然离实际使用还有较大的距离(具体差距在文章后面会分析),但会让你对AI应用有一个初步的认识,有能力逐步搭建出能够实际应用的模型. 建议和反馈,请发送到 https://github.com…
[源码下载] 背水一战 Windows 10 (62) - 控件(媒体类): InkCanvas 保存和加载, 手写识别 作者:webabcd 介绍背水一战 Windows 10 之 控件(媒体类) InkCanvas 保存和加载 InkCanvas 手写识别 示例1.演示 InkCanvas 涂鸦板的保存和加载Controls/MediaControl/InkCanvasDemo3.xaml <Page x:Class="Windows10.Controls.MediaControl.I…
------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ------------------------------------ 循环神经网络RNN 相关名词: - LSTM:长短期记忆 - 梯度消失/梯度离散 - 梯度爆炸 - 输入控制:控制是否把当前记忆加入主线网络 - 忘记控制:控制是否暂时忘记主线网络,先看当前分线 - 输出控制: 控制输出是否要考虑要素 - 数据有顺序的/序列化 - 前面的影响后面的 RNN L…
用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识 循环神经网络RNN相比传统的神经网络在处理序列化数据时更有优势,因为RNN能够将加入上(下)文信息进行考虑.一个简单的RNN如下图所示: 将这个循环展开得到下图: 上一时刻的状态会传递到下一时刻.这种链式特性决定了RNN能够很好的处理序列化的数据,RNN 在语音识别,语言建模,翻译,图片描述等问题上已经取得了很到的结果. 根据输入.输出的不同和是否有延迟等一些情况,RNN在应用中有如下一些形态: RNN存在的问题 RNN能…