lightoj 1063 求割点】的更多相关文章

题目链接:http://lightoj.com/volume_showproblem.php?problem=1063 #include<cstdio> #include<cstring> #include<cmath> #include<iostream> #include<algorithm> #include<queue> #include<vector> using namespace std; ; const i…
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=26780 思路:判断一个点是否是割点的两个条件:1.如果一个点v是根结点并且它的子女个数大于等于2,则v是割点.2.如果点v不是根结点,并且存在她的一个子女u,使得low[u]>=dfn[v],则v是割点.然后我发现以前求割点的写法有点问题,=.=//.幸好不是在比赛中遇到!贡献上最新模板. #include<iostream> #include<cs…
Ant Hills Time Limit: 2000ms Memory Limit: 32768KB This problem will be judged on LightOJ. Original ID: 106364-bit integer IO format: %lld      Java class name: Main After many years of peace, an ant-war has broken out. In the days leading up to the…
一.基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合. 3.点连通度:最小割点集合中的顶点数. 4.割边(桥):删掉它之后,图必然会分裂为两个或两个以上的子图. 5.割边集合:如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为割边集合. 6.边连通度:一个图的边连通度的定义为,最小割边集合中的边…
SPF Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7678   Accepted: 3489 Description Consider the two networks shown below. Assuming that data moves around these networks only between directly connected nodes on a peer-to-peer basis, a…
都口胡了求割边,就顺便口胡求割点好了QAQ 的定义同求有向图强连通分量. 枚举当前点的所有邻接点: 1.如果某个邻接点未被访问过,则访问,并在回溯后更新 2.如果某个邻接点已被访问过,则更新 对于当前节点, 如果为搜索树中的根节点,若它的子节点数(根是多棵子树上节点的唯一连通方式),则为割点; 如果为搜索树上的非根节点,若存在子节点满足(向上无法到达的祖先),则为割点. inline void tarjan(int u,int fa){ dfn[u]=low[u]=++cnt; for(int…
tarjan求割点:cojs 8. 备用交换机 ★★   输入文件:gd.in   输出文件:gd.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] n个城市之间有通讯网络,每个城市都有通讯交换机,直接或间接与其它城市连接.因电子设备容易损坏,需给通讯点配备备用交换机.但备用交换机数量有限,不能全部配备,只能给部分重要城市配置.于是规定:如果某个城市由于交换机损坏,不仅本城市通讯中断,还造成其它城市通讯中断,则配备备用交换机.请你根据城市线路情况,计算需配备备用交换…
Tarjan算法. 1.若u为根,且度大于1,则为割点 2.若u不为根,如果low[v]>=dfn[u],则u为割点(出现重边时可能导致等号,要判重边) 3.若low[v]>dfn[u],则边(u,v)为桥(封死在子树内),不操作. 求割点时,枚举所有与当前点u相连的点v: 1.是重边: 忽略 2.是树边: Tarjan(v),更新low[u]=min(low[u],low[v]); 子树个数cnt+1.如果low[v] >= dfn[u],说明是割点,割点数+1 3.是回边: 更新lo…
Network Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12707   Accepted: 5835 Description A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting several places numbered by integers from 1 to N…
基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合. 3.点连通度:最小割点集合中的顶点数. 4.割边(桥):删掉它之后,图必然会分裂为两个或两个以上的子图. 5.割边集合:如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为割边集合. 6.边连通度:一个图的边连通度的定义为,最小割边集合中的边数.…