浅析py-faster-rcnn中不同版本caffe的安装及其对应不同版本cudnn的解决方案 本文是截止目前为止最强攻略,按照本文方法基本可以无压力应对caffe和Ross B. Girshick的代码安装配置,如有转载请注明出处 Copyright 飞翔的蜘蛛人 注1:本人新手,文章中不准确的地方,欢迎批评指正 注2:阅读本文前请先熟悉: 1)      Linux的基本操作 2)      熟悉Ubuntu系统下nvidia驱动及cuda安装,请见我的另一篇博客 基于UBUNTU14.04…
看了py-faster-rcnn上的issue,原来大家都遇到各种问题. 我要好好琢磨一下,看看到底怎么样才能更好地把GPU卡发挥出来.最近真是和GPU卡较上劲了. 上午解决了g++的问题不是. 然后下午我就想我要解决掉yml加载不上的问题.就是easydict版本太低了,可以改代码,也可以从新安装.conda install -c verydeep easydict. 参考:https://github.com/rbgirshick/py-faster-rcnn/issues/201 还有一个…
1.介绍 图为faster rcnn的rpn层,接自conv5-3 图为faster rcnn 论文中关于RPN层的结构示意图 2 关于anchor: 一般是在最末层的 feature map 上再用3*3的窗口去卷积特征.当3*3的卷积核滑动到特征图的某一个位置时,以当前滑动窗口中心为中心映射到原图的一个区域(注意 feature map 上的一个点是可以映射到原图的一个区域的,这个很好理解,感受野起的作用啊-...),以原图上这个区域的中心对应一个尺度和长宽比,就是一个anchor了.fas…
真是好事多磨啊,计算机系统依然是14.04,而cuda依然是8.0,唯一不同的是时间不一样,下载的各种库版本有差别,GPU的driver不一样. 但是这样就出问题了,py-faster rcnn的lib库编译时总是提示错误. 网上搜了开始的相关帖子都提示说是gcc的版本问题,但是我后来问了一下在原来单位的同事,gcc的版本也没问题,版本和原来用的一样.后来我把cython卸载(0.26.1),从新安装旧版本(0.19.1)依然同样的错误,我没有继续追究版本问题.昨天看到github上的一个帖子说…
如果小伙伴的英语能力强可以直接阅读这里:https://stackoverflow.com/questions/45137835/what-the-impact-of-different-dimension-of-image-resizer-when-using-default-confi 和https://github.com/tensorflow/models/issues/1794 image_resizer { keep_aspect_ratio_resizer { min_dimens…
最近参照网上教程安装ubuntu的Docker怎么都不成功,我最后参照官方文档成功安装 https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#if-you-need-to-use-aufs 大家可以先不笔管具体的细节,我把需要粘贴的代码放到下面.大家一步步安装就好,如果遇到问题可以留言. 我是用的镜像就是官网直接下载的16.04镜像 首先删除旧版本 $ sudo apt-get remove docker dock…
论文从理论的角度出发,对目标检测的域自适应问题进行了深入的研究,基于H-divergence的对抗训练提出了DA Faster R-CNN,从图片级和实例级两种角度进行域对齐,并且加入一致性正则化来学习域不变的RPN.从实验来看,论文的方法十分有效,这是一个很符合实际需求的研究,能解决现实中场景多样,训练数据标注有限的情况.   来源:晓飞的算法工程笔记 公众号 论文: Domain Adaptive Faster R-CNN for Object Detection in the Wild 论…
转自: https://zhuanlan.zhihu.com/p/31426458 faster rcnn的基本结构 Faster RCNN其实可以分为4个主要内容: Conv layers.作为一种CNN网络目标检测方法,Faster RCNN首先使用一组基础的conv+relu+pooling层提取image的feature maps.该feature maps被共享用于后续RPN层和全连接层. Region Proposal Networks.RPN网络用于生成region proposa…
转自http://www.infocool.net/kb/Python/201611/209696.html#原文地址 第一步,准备 从train_faster_rcnn_alt_opt.py入: 初始化参数:args = parse_args() 采用的是Python的argparse 主要有–net_name,–gpu,–cfg等(在cfg中只是修改了几个参数,其他大部分参数在congig.py中,涉及到训练整个网络). cfg_from_file(args.cfg_file) 这里便是代用…
转自:https://zhuanlan.zhihu.com/p/31426458 经过R-CNN和Fast RCNN的积淀,Ross B. Girshick在2016年提出了新的Faster RCNN,在结构上,Faster RCNN已经将特征抽取(feature extraction),proposal提取,bounding box regression(rect refine),classification都整合在了一个网络中,使得综合性能有较大提高,在检测速度方面尤为明显. <img…