高斯判别分析(附Matlab实现) 生成学习算法 高斯判别分析(Gaussian Discriminant analysis,GDA),与之前的线性回归和Logistic回归从方法上讲有很大的不同,GDA是一种生成学习算法(Generative Learning Algorithms),而之前的属于判别学习算法(Discriminative Learning Algorithms). 它们的主要区别是: 判别学习算法是直接训练出p(y|x): 生成学习算法是分别训练出各个类别的概率模型,之后再用…
如果在我们的分类问题中,输入特征xx是连续型随机变量,高斯判别模型(Gaussian Discriminant Analysis,GDA)就可以派上用场了. 以二分类问题为例进行说明,模型建立如下: 样本输入特征为x∈Rnx∈Rn,其类别y∈{0,1}y∈{0,1}: 样本类别yy服从参数为ϕϕ的伯努力分布,即y∼Bernoulli(ϕ)y∼Bernoulli(ϕ): 两类样本分别服从不同的高斯分布,即x|y=0∼N(μ0,Σ),x|y=1∼N(μ1,Σ)x|y=0∼N(μ0,Σ),x|y=1∼…
高斯判别分析模型(Gaussian Discriminant Analysis ,GDA) 当我们分类问题的输入特征$x $为连续值随机变量时,可以用高斯判别分析模型(Gaussian Discriminant Analysis ,GDA).高斯判别分析模型通过多元正态分布来建模前面提到的概率 \(p(x | y)\).具体的,这个模型为, \[ \begin{equation} \begin{aligned} y & \sim \operatorname{Bernoulli}(\phi) \\…
高斯判别分析模型( Gaussian discriminant analysis)及Python实现 http://www.cnblogs.com/sumai 1.模型 高斯判别分析模型是一种生成模型,而之前所提到的逻辑回归是一种判别模型,生成模型和判别模型的详细了解可参考这篇文章: http://blog.sciencenet.cn/home.php?mod=space&uid=248173&do=blog&id=227964 简单的来说,我们的目标都是p(y|x),判别模型是构…
如果在我们的分类问题中,输入特征$x$是连续型随机变量,高斯判别模型(Gaussian Discriminant Analysis,GDA)就可以派上用场了. 以二分类问题为例进行说明,模型建立如下: 样本输入特征为\(x\in\mathbb{R}^n\),其类别\(y\in\{0,1\}\): 样本类别\(y\)服从参数为\(\phi\)的伯努力分布,即\(y\sim Bernoulli(\phi)\): 两类样本分别服从不同的高斯分布,即\(x|y=0\sim\mathcal{N}(\mu_…
Linear discriminant analysis (LDA) 线性判别分析也是机器学习中常用的一种降维算法,与 PCA 相比, LDA 是属于supervised 的一种降维算法.PCA考虑的是整个数据集在高维空间的分散性,PCA降维之后依然要让数据在低维空间尽可能地分散.而LDA考虑的是类与类之间的差别(用距离来衡量). 我们考虑两类情况下的LDA, 给定一个训练集 D={xi∈Rd},i=1,2,...N, 假设其中有 n1 个属于第一类 c1,n2 个属于第二类c2,N=n1+n2…
参考: cs229讲义 机器学习(一):生成学习算法Generative Learning algorithms:http://www.cnblogs.com/zjgtan/archive/2013/06/08/3127490.html 首先,简单比较一下前几节课讲的判别学习算法(Discriminative Learning Algorithm)和本节课讲的生成学习算法(Generative Learning Algorithm)的区别. eg:问题:Consider a classificat…
原文来自:http://blog.csdn.net/xiazhaoqiang/article/details/6585537 LDA算法入门 一. LDA算法概述:       线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,它是在1996年由Belhumeur引入模式识别和人工智能领域的.线性判别分析的基本思想是将高维的模式样本投影到最佳鉴别…
一.LDA的基本思想 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,它是在1996年由Belhumeur引入模式识别和人工智能领域的.线性鉴别分析的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳的可分离性. 如…