Tutorial on word2vector using GloVe and Word2Vec 2018-05-04 10:02:53 Some Important Reference Pages First:  Reference Page: https://github.com/IliaGavrilov/NeuralMachineTranslationBidirectionalLSTM/blob/master/1_Bidirectional_LSTM_Eng_to_French.ipynb…
目录 词向量简介 1. 基于one-hot编码的词向量方法 2. 统计语言模型 3. 从分布式表征到SVD分解 3.1 分布式表征(Distribution) 3.2 奇异值分解(SVD) 3.3 基于SVD的词向量方法 4. 神经网络语言模型(Neural Network Language Model) 5. Word2Vec 5.1 两个模型 5.2 两个提速手段 5.3一些预处理细节 5.4 word2vec的局限性 6. GloVe 6.1 统计共现矩阵 6.2 Glove的由来 6.3…
2019-09-09 15:36:13 问题描述:word2vec 和 glove 这两个生成 word embedding 的算法有什么区别. 问题求解: GloVe (global vectors for word representation) 与word2vec,两个模型都可以根据词汇的 "共现 co-occurrence" 信息,将词汇编码成一个向量(所谓共现,即语料中词汇一起出现的频率). 两者最直观的区别在于,word2vec是 "predictive"…
[白话解析] 带你一起梳理Word2vec相关概念 0x00 摘要 本文将尽量使用易懂的方式,尽可能不涉及数学公式,而是从整体的思路上来说,运用感性直觉的思考来帮大家梳理Word2vec相关概念. 0x01 导读 1. 原委 本来只是想写Word2vec,没想到一个个知识点梳理下来,反而Word2vec本身只占据了一小部分.所以干脆就把文章的重点放在梳理相关概念上,这样大家可以更好的理解Word2vec. 为了讨论Word2vec,我们需要掌握(或者暂且当做已知)的先决知识点有: 独热编码 /…
有很多改进版的word2vec,但是目前还是word2vec最流行,但是Glove也有很多在提及,笔者在自己实验的时候,发现Glove也还是有很多优点以及可以深入研究对比的地方的,所以对其进行了一定的学习. 部分学习内容来源于小象学院,由寒小阳老师授课<深度学习二期课程> 高级词向量三部曲: 1.NLP︱高级词向量表达(一)--GloVe(理论.相关测评结果.R&python实现.相关应用) 2.NLP︱高级词向量表达(二)--FastText(简述.学习笔记) 3.NLP︱高级词向量…
Getting Started with Word2Vec 1. Source by Google Project with Code: https://code.google.com/archive/p/word2vec/ Blog: Learning Meaning Behind Words Paper: Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Represen…
1. 说说GloVe 正如GloVe论文的标题而言,GloVe的全称叫Global Vectors for Word Representation,它是一个基于全局词频统计(count-based & overall statistics)的词表征(word representation)工具,它可以把一个单词表达成一个由实数组成的向量,这些向量捕捉到了单词之间一些语义特性,比如相似性(similarity).类比性(analogy)等.我们通过对向量的运算,比如欧几里得距离或者cosine相似…
什么是GloVe GloVe(Global Vectors for Word Representation)是一个基于全局词频统计(count-based & overall statistics)的词表征(word representation)工具,它可以把一个单词表达成一个由实数组成的向量,这些向量捕捉到了单词之间一些语义特性,比如相似性(similarity).类比性(analogy)等.我们通过对向量的运算,比如欧几里得距离或者cosine相似度,可以计算出两个单词之间的语义相似性.…
之前已经介绍过关于 Recurrent Neural Nnetwork 与 Long Short-Trem Memory 的网络结构与参数求解算法( 递归神经网络(Recurrent Neural Networks,RNN) ,LSTM网络(Long Short-Term Memory )),本文将列举一些 RNN 与 LSTM 的应用, RNN (LSTM)的样本可以是如下形式的:1)输入输出均为序列:2)输入为序列,输出为样本标签:3)输入单个样本,输出为序列.本文将列举一些 RNN(LST…
转载 https://zhuanlan.zhihu.com/p/49271699 首发于深度学习前沿笔记 写文章   从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 张俊林 你所不知道的事 179 人赞了该文章 Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得.那为什么会有这么高的评价呢?是因为它有重大的理论或者模型创新吗?其实并没有,从模型创新角度看一般,创新不算大.但是架不住效果太好了,基本刷新了很…