中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300035 前置浅讲 前置知识点:\(Exgcd\) 这两个东西都是用来解同余方程组的 形如 \[ \left\{ \begin{aligned} x\equiv B_1(mod\ W_1)\\ x\equiv B_2(mod\ W_2)\\ \cdots\\ x\equiv B_n(mod\ W_n)\\ \end{aligne…
原文链接https://www.cnblogs.com/zhouzhendong/p/exCRT.html 扩展中国剩余定理 (exCRT) 的证明与练习 问题模型 给定同余方程组 $$\begin{cases}x&\equiv&x_1&\pmod {p_1}\\x&\equiv&x_2&\pmod {p_2}\\ &&\vdots\\x&\equiv&x_n&\pmod {p_n}\end{cases}$$ 求解 $…
扩展中国剩余定理 (ExCRT) 学习笔记 预姿势: 扩展中国剩余定理和中国剩余定理半毛钱关系都没有 问题: 求解线性同余方程组: \[ f(n)=\begin{cases} x\equiv a_1\pmod {m_1}\\ x\equiv a_2\pmod {m_2}\\ ... ...\\ x\equiv a_n\pmod {m_n}\\ \end{cases}\] 的解\(x\). \(m\)两两之间不一定互质! 解法: ExCRT的基本思想是将方程两两合并,合并规则如下: 定义 \[in…
问题 传送门 看到这个问题感觉很难??? 不用怕,往下看就好啦 假如你不会CRT也没关系 EXCRT大致思路 先考虑将方程组两两联立解开,如先解第一个与第二个,再用第一个与第二个的通解来解第三个...(以此类推) 那么怎么解第一个与第二个同余方程呢? \[\begin{cases} x \equiv a_1 \pmod{b_1}\\ x \equiv a_2 \pmod{b_2}\\ . . . \end{cases} \] 则存在整数(注意不是非负),使得 \[\begin{cases} x…
前言 由于 \(\{\mathrm{CRT}\}\subseteq\{\mathrm{exCRT}\}\),而且 CRT 又太抽象了,所以直接学 exCRT 了. 摘自 huyufeifei 博客 这么抽象的东西我怎么可能会写 前置技能 gcd/lcm exgcd 快速乘 参考资料 一篇未通过的洛谷日报 by AH_ljq 比较直观的 exCRT 学习笔记 by Milky Way 我之前写过的 exgcd 学习笔记 huyufeifei 对 CRT 的劝退 用途 用于求一个关于 \(x​\)…
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1}b[j]$ ,$ res$是前$ i-1 $个方程的最小解 则$ res+x*M$ 是前 $i-1 $个方程的通解 那么我们求的就是 $res+x*M ≡ a[i] (mod b[i])$ $<=> x*M - y*b[i] = a[i]-res$ 用exgcd求出的解为 t (当且仅当 gcd…
EXCRT 不保证模数互质 \[\begin{cases} x \equiv b_1\ ({\rm mod}\ a_1) \\ x\equiv b_2\ ({\rm mod}\ a_2) \\ ... \\ x \equiv b_n\ ({\rm mod}\ a_n)\end{cases}\] CRT戳这里 来一手数学归纳法 设已经求出前 \(k - 1\) 组的一个解 \(q\) 设 \(M = \prod_{i = 1}^{k - 1}a_{i}\) 我们知道前 \(k - 1\) 组的通解…
题面 传送门:洛咕 Solution 真*扩展中国剩余定理模板题.我怎么老是在做模板题啊 但是这题与之前不同的是不得不写龟速乘了. 还有两个重点 我们在求LCM的时候,记得先/gcd再去乘另外那个数,直接乘会乘爆的 我们在做龟速乘之前,要保证要乘的两个数>=0,如果<0的话,龟速乘会爆掉的,我们传进去之间记得膜一下 int128:你说啥?这里风太大,我听不见. Code //Luogu P4777 [模板]扩展中国剩余定理(EXCRT) //Jan,15th,2019 //中国剩余定理 #in…
思路 中国剩余定理解决的是这样的问题 求x满足 \[ \begin{matrix}x \equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\\ \dots\\x\equiv a_n(mod\ m_n)\end{matrix} \] 在模数互质的情况下,解为 \[ x=\sum_ia_iM_iM_i^{-1}(mod M) \] 其中\(M=\prod_{i}m_i\),\(M_i=\frac{M}{m_i}\),\(M_i^{-1}\)为\(M_i\)在模\(m…
扩展中国剩余定理(EXCRT)学习笔记 用途 求解同余方程组 \(\begin{cases}x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2}\left( mod\ m_{2}\right) \\ \ldots \\ x\equiv c_r\left( mod\ m_r\right) \end{cases}\) 其中 \(m_1,m_2,m_3...m_k\) 为不一定两两互质的整数, 求 \(x\) 的最小非负整数解. 求法 考虑两两合…