题目链接 BZOJ 洛谷 详见这. 求所有点到某个点距离和最短,即求树的重心.考虑如何动态维护. 两棵子树合并后的重心一定在两棵树的重心之间那条链上,所以在合并的时候用启发式合并,每合并一个点检查sz[]大的那棵子树的重心(记为root)最大子树的sz[]*2是否>n: 若>n,则向fa移动一次(先把合并点Splay到根).重心还一定是在sz[]大的那棵子树中,且移动次数不会超过sz[]小的子树的点数(所以总移动次数不会超过O(n)?). 复杂度 \(O(nlog^2n)\) 具体实现..想通…
Code: #include<bits/stdc++.h> #define maxn 200000 #define inf 1000000000 using namespace std; void setIO(string s) { string in=s+".in",out=s+".out"; freopen(in.c_str(),"r",stdin); } multiset<int>sonmax[maxn]; int…
洛谷P4299传送门 题目大意:给你一颗树,边是一条一条连上去的 在连接过程中会存在询问,询问当前节点所在联通块(其实是一颗树)的重心是哪个节点 以及森林中所有树的重心的异或和 在做这道题之前,要先了解树的重心的一个性质: 两棵树合并时,新树的重心在合并后,原来两颗树的重心的两个节点构成的那条链上 了解了这条性质,思路就不难想了 当连接两个节点时,先寻找它们所在原树的重心,然后连接这两个节点,在取出两个原树重心那两个节点构成的那条链 每次寻找重心,连接节点,取出重心形成了链,复杂度约为 如果我们…
[BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了5条边.其中,(3,8)这条边的负载是6,因 为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8). 现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载…
这题 FlashHu 的优化思路值得借鉴 前置引理 树中所有点到某个点的距离和中,到重心的距离和是最小的. 把两棵树通过某一点相连得到一颗新的树,新的树的重心必然在连接原来两棵树重心的路径上. 一棵树添加或者删除一个节点,树的重心最多只移动一条边的位置. 一棵树最多有两个重心,且相邻:同时,拥有奇数个节点的树只有一个重心 其实是树的重心本身的定义:各个子树大小皆不超过总节点数的一半的节点即为树的重心(证明:不管向哪一侧移动,对应的子树节点个数都是 $\le$ 树的总节点一半的,也就是说,剩下的节…
Description 给你一片森林, 支持两个操作: 查询$x$到$y$的$K$大值,  连接两棵树中的两个点 Solution 对每个节点$x$动态开权值线段树, 表示从$x$到根节点路径上权值出现的次数. 查询时差分即可: $sum[x]+sum[y]-sum[lca]-sum[f[lca]]$ 连边时需要启发式合并,将节点数小的接到节点数大的上去, 再遍历小的树, 并更新权值 我刚开始以为testcase是数据组数, TLE我好久,, Code #include<cstdio> #in…
这道题目太神啦! 我们考虑他的每一次合并操作,为了维护两棵树合并后树的重心,我们只好一个一个的把节点加进去.那么这样一来看上去似乎就是一次操作O(nlogn),但是我们拥有数据结构的合并利器--启发式合并,那么我们就可以在均摊O(log2n)的时间内合并一颗树,这题就可以完美的AC啦! 什么,你问怎么维护重心?我们可以记录一个值sb表示子树的大小.怎么维护sb呢?我们可以采用打标记的方法,把新加入的节点到根的路径上的点的sb值都+1 对于维护答案,我们维护一个sm变量,来保存子树内所有节点到这个…
2888: 资源运输 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 63  Solved: 33[Submit][Status][Discuss] Description        小Y盯上了最近发行的即时战略游戏——ResourceTransport.但在前往通关之路的道路上,一个小游戏挡住了小Y的步伐.“国家的本质是生产与收集资源”是整款游戏的核心理念,这个小游戏也不例外.简单的说,用户需要管理一个国家,使其繁荣富强.        一个…
Description 在X星球上有N个国家,每个国家占据着X星球的一座城市.由于国家之间是敌对关系,所以不同国家的两个城市是不会有公路相连的. X星球上战乱频发,如果A国打败了B国,那么B国将永远从这个星球消失,而B国的国土也将归A国管辖.A国国王为了加强统治,会在A国和B国之间修建一条公路,即选择原A国的某个城市和B国某个城市,修建一条连接这两座城市的公路. 同样为了便于统治自己的国家,国家的首都会选在某个使得其他城市到它距离之和最小的城市,这里的距离是指需要经过公路的条数,如果有多个这样的…
容易写出nQ的暴力 由于数据是期望的时间 所以直接dfs可以跑的很快 可以拿到70分. 当然 可以进一步优化暴力 使用换根dp 然后可以将暴力优化到n^2. const int MAXN=300010; int n,Q,T,len,maxx; int lin[MAXN],d[MAXN],ver[MAXN<<1],nex[MAXN<<1]; inline void add(int x,int y) { ver[++len]=y; nex[len]=lin[x]; lin[x]=len…