给定一个由小写字母组成的字符串,输出有多少重复的回文子序列 #include<cstdio> #include<cstring> using namespace std; #define N 2002 ; int n; char s[N]; int f[N][N],g[N][N]; ],nxt[N][]; int get_f(int l,int r) { ; int &ans=f[l][r]; ) return ans; ,r)+get_f(l,r-); ,r)+get_f…
传送门 题意简述:nnn个点的带边权无向图,定义一个图的权值是所有边的积,问所有nnn个点都连通的子图的权值之和. 思路: fif_ifi​表示保证集合iii中所有点都连通其余点随意的方案数. gig_igi​表示只考虑集合iii中所有点的状态的子图的权值和. 我们先预处理出ggg数组,然后考虑递推fff数组. 显然fif_ifi​是等于gig_igi​扣掉一些东西的,扣掉的应该就是不连通的情况. 于是我们枚举编号最小的点所在的连通块来扣掉非法情况. 时间复杂度O(n2n+3n)O(n2^n+3…
题目链接 1.对于简单的版本n<=500, ai<=50 直接暴力枚举两个点x,y,dfs求x与y的距离. 2.对于普通难度n<=10000,ai<=500 普通难度解法挺多 第一种,树形dp+LCA 比赛的时候,我猜测对于不为1的n个数,其中两两互质的对数不会很多,肯定达不到n^2 然后找出所有互质的对数,然后对为1的数进行特殊处理.(初略的估计了下,小于500的大概有50个质数,将n个数平均分到这些数中,最后大概有10000*50*200=10^7) 对所有的非1质数对,采用离…
题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq S}^{ }(-1)^{|T|-1}E(min(T))$ 那么只需要知道每个子集中最早得到的物品的期望时间即可得出答案. 对于每个子集,最早得到的物品的期望时间就是一次选择能得到这个子集中元素的概率的倒数. 用一次选择能得到这个子集中的元素的方案数除上总方案数(每次共有$2*n*m-n-m$种选择方…
正解:期望 解题报告: 传送门! 先放下题意,,,已知有总共有$n$张卡片,每次有$p_i$的概率抽到第$i$张卡,求买所有卡的期望次数 $umm$看到期望自然而然想$dp$? 再一看,哇,$n\leq 20$,那不就,显然考虑状压$dp$? 转移也很$easy$鸭,设$f_{s}$表示已经获得的卡片状态为$s$时候的期望次数 不难得到转移方程,$f_s=\sum_{i\notin{S}}f_{s|\{i\}}\cdot p_i+(1-\sum_{i\notin{S}}p_i)\cdot f_s…
3622: 已经没有什么好害怕的了 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1033  Solved: 480[Submit][Status][Discuss] Description Input Output Sample Input 4 25 35 15 4540 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相同. 还有输入应该是第二行是糖果,第三行是药片 考虑dp两个数组排序,可以求出有m组糖…
传送门 不考虑成为非降序列后停止的限制,那么答案显然是\(\sum\limits_{i=1}^N cnt_i \times (N-i)!\),其中\(cnt_i\)表示长度为\(i\)的非降序列数量 计算\(cnt_i\)使用DP:设\(f_{i,j}\)表示前\(i\)个数中长度为\(j\).以第\(i\)个数结尾的非降序列数量,转移可以树状数组优化 然后考虑成为非降序列之后停止的限制.容斥一下,对于长度为\(i\)的非降序列,其中的非法情况就是从长度为\(i+1\)的非降序列删掉一个数转移过…
传送门 思路 大佬都说这是套路题--嘤嘤嘤我又被吊打了\(Q\omega Q\) 显然,这题是要\(DP\)的. 首先思考一下性质: 为了方便,下面令\(k=\frac{n+k}{2}\),即有恰好\(k\)组糖果比药片大. 显然,\(a,b\)数组都要先从小到大排序.(\(a\)是糖果,\(b\)是药片) 考虑\(a_i\)造成的影响: 1.若它匹配了一个比它小的\(b\),则对于\(a_j,j>i\),它匹配比它小的\(b\)的方案数少了\(1\). 2.若它匹配了一个比它大的\(b\)--…
Permutation p is an ordered set of integers p1,  p2,  ...,  pn, consisting of n distinct positive integers, each of them doesn't exceed n. We'll denote the i-th element of permutation p as pi. We'll call number n the size or the length of permutation…
题意:给定n和a[i](i=0..4),求所有n位5进制数中没有前导0且i出现的次数不超过a[i]的数的个数 2<=n<=15000,0<=a[i]<=3e4 思路:设f(n,a,b,c,d,e)为可以含前导0的答案 则ANS=f(n,a,b,c,d,e)-f(n-1,a-1,b,c,d,e) 考虑对每一种数字出现的情况进行容斥 设dp[i][j]为当前到第i位,数字出现的情况为j,至少有一种数字超过了限制次数的方案数 转移有两种:已经出现过的数字可以再出现一次,没有出现过的数字先…