RoIPooling】的更多相关文章

一).RoIPooling 这个可以在Faster RCNN中使用以便使生成的候选框region proposal映射产生固定大小的feature map 先贴出一张图,接着通过这图解释RoiPooling的工作原理 针对上图 1)Conv layers使用的是VGG16,feat_stride=32(即表示,经过网络层后图片缩小为原图的1/32),原图800*800,最后一层特征图feature map大小:25*25 2)假定原图中有一region proposal,大小为665*665,这…
一.RoIPooling与RoIAlign 1.1.RoIPooling 通过对Faster RCNN的学习我妈了解的RolPooling可以使生成的候选框region proposal映射产生固定大小的feature map 先贴出一张图,接着通过这图解释RoiPooling的工作原理 针对上图 1)Conv layers使用的是VGG16,feat_stride=32(即表示,经过网络层后图片缩小为原图的1/32),原图800*800,最后一层特征图feature map大小:25*25 2…
. 代码: template <typename Dtype> void ROIPoolingLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { //输入有两部分组成,data和rois const Dtype* bottom_data = bottom[0]->cpu_d…
RoI Pooling 实现从原图ROI区域映射到卷积区域最后pooling到固定大小的功能,然后通过池化把该区域的尺寸归一化成卷积网络输入的尺寸. ROIAlign 上面RoI Pooling从原图ROI映射到卷积区域,即原图ROI与特征图ROI之间的映射,使用了stride间隔的取整,使得特征图ROI再映射回原图ROI的时候有stride的误差.尤其经过最大值池化后的特征与原ROI之间的空间不对齐就更加明显了. 因此,ROIAlign从原图到特征图直接的ROI映射直接使用双线性插值,不取整,…
caffemodel是二进制的protobuf文件,利用protobuf的python接口可以读取它,解析出需要的内容 不少算法都是用预训练模型在自己数据上微调,即加载"caffemodel"作为网络初始参数取值,然后在此基础上更新.使用方式往往是:同时给定solver的prototxt文件,以及caffemodel权值文件,然后从solver创建网络,并从caffemodel读取网络权值的初值.能否不加载solver的prototxt,只加载caffemodel并看看它里面都有什么东…
在前一篇随笔中,数据制作成了VOC2007格式,可以用于Faster-RCNN的训练. 1.针对数据的修改 修改datasets\VOCdevkit2007\VOCcode\VOCinit.m,我只做了两类 VOCopts.classes={... 'dog' 'flower'}; 修改function\fast_rcnn\fast_rcnn_train.m,val_iters不能大于val数据量(我的只有几十个). ip.addParamValue('val_iters', 20, @issc…
即将进入涉及大量数学知识的阶段,先读下“别人家”的博文放松一下. 读罢该文,基本能了解面部识别领域的整体状况. 后生可畏. 结尾的Google Facenet中的2亿数据集,仿佛隐约听到:“你们都玩儿蛋去吧”. 长文干货!走近人脸检测:从 VJ 到深度学习(上) 长文干活!走进人脸检测:从 VJ 到深度学习(下) Ello 戏说系列 人脸识别简史与近期发展 人脸检测的开始和基本流程 具体来说,人脸检测的任务就是判断给定的图像上是否存在人脸, 如果人脸存在,就给出全部人脸所处的位置及其大小.由于人…
技术揭秘:海康威视PASCAL VOC2012目标检测权威评测夺冠之道 原创 2016-09-21 钟巧勇 深度学习大讲堂 点击上方“深度学习大讲堂”可订阅哦!深度学习大讲堂是高质量原创内容平台,邀请学术界.工业界一线专家撰稿,致力于推送人工智能与深度学习最新技术.产品和活动信息!           近年来,随着深度学习的崛起,计算机视觉得到飞速发展.目标检测作为计算机视觉的基础算法,也搭上了深度学习的快车.基于Proposal的检测框架,从R-CNN到Faster R-CNN,算法性能越来越…
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in this task according to this metric; authors are willing to reveal the method White background = authors are willing to reveal the method Grey background…
原文链接:https://zhuanlan.zhihu.com/p/23249000 目录 场景分类 数据增强 数据增强对最后的识别性能和泛化能力都有着非常重要的作用.我们使用下面这些数据增强方法. 第一,对颜色的数据增强,包括色彩的饱和度.亮度和对比度等方面,主要从Facebook的代码里改过来的. 第二,PCA Jittering,最早是由Alex在他2012年赢得ImageNet竞赛的那篇NIPS中提出来的. 我们首先按照RGB三个颜色通道计算了均值和标准差,对网络的输入数据进行规范化,随…