一.前述 L1正则,L2正则的出现原因是为了推广模型的泛化能力.相当于一个惩罚系数. 二.原理 L1正则:Lasso Regression L2正则:Ridge Regression 总结: 经验值 MSE前系数为1 ,L1 , L2正则前面系数一般为0.4~0.5 更看重的是准确性. L2正则会整体的把w变小. L1正则会倾向于使得w要么取1,要么取0 ,稀疏矩阵 ,可以达到降维的角度. ElasticNet函数(把L1正则和L2正则联合一起): 总结: 1.默认情况下选用L2正则. 2.如若…
一.前述 鲁棒性调优就是让模型有更好的泛化能力和推广力. 二.具体原理 1.背景 第一个更好,因为当把测试集带入到这个模型里去.如果测试集本来是100,带入的时候变成101,则第二个模型结果偏差很大,而第一个模型偏差不是很大. 2.目的 鲁棒性就是为了让w参数也就是模型变小,但不是很小.所以引出了 L1和L2正则.  L1和L2的使用就是让w参数减小的使用就是让w参数减小. L1正则,L2正则的出现原因是为了推广模型的泛化能力.相当于一个惩罚系数. 3.具体使用 L1正则:Lasso Regre…
这里讨论机器学习中L1正则和L2正则的区别. 在线性回归中我们最终的loss function如下: 那么如果我们为w增加一个高斯先验,假设这个先验分布是协方差为 的零均值高斯先验.我们在进行最大似然: 这个东西不就是我们说的加了L2正则的loss function吗? 同理我们如果为w加上拉普拉斯先验,就可以求出最后的loss function也就是我们平时说的加了L1正则: 因为拉普拉斯的分布相比高斯要更陡峭,它们的分布类似下图,红色表示拉普拉斯,黑色表示高斯 可以看出拉普拉斯的小w的数目要…
原文链接:https://blog.csdn.net/w5688414/article/details/78046960 范数(norm) 数学上,范数是一个向量空间或矩阵上所有向量的长度和大小的求和.简单一点,我们可以说范数越大,矩阵或者向量就越大.范数有许多种形式和名字,包括最常见的:欧几里得距离(Euclideandistance),最小均方误差(Mean-squared Error)等等. 大多数时间,你会在等式中看见范数像下面那样: ||x||,x可以是一个向量或者矩阵. 例如一个向量…
L1正则是权值的绝对值之和,重点在于可以稀疏化,使得部分权值等于零. L1正则的含义是 ∥w∥≤c,如下图就可以解释为什么会出现权值为零的情况. L1正则在梯度下降的时候不可以直接求导,可以有以下几种方法来优化 1.OWL-QN算法http://blog.csdn.net/google19890102/article/details/47424845 对于目标函数中包含加性的非平滑项并使用梯度下降求解的问题,如果可以使用proximal operator,则解法如下: 假设目标函数为 其中 可导…
L1,L2正则都可以看成是 条件限制,即 $\Vert w \Vert \leq c$ $\Vert w \Vert^2 \leq c$ 当w为2维向量时,可以看到,它们限定的取值范围如下图: 所以它们对模型的限定不同 而对于一般问题来说,L1 正则往往取到正方形的顶点,即会有很多分量为0,具有稀疏性,有特征选择的作用…
                                                                           第十四节过拟合解决手段L1和L2正则 第十三节中,我们讲解了过拟合的情形,也就是过度的去拟合训练集上的结果了,反倒让你的模型太复杂.为了去解决这种现象,我们提出用L1,L2正则去解决这种问题. 怎么把正则应用进去?我们重新审视目标函数,以前我们可以理解目标函数和损失函数是一个东西.而有正则的含义之后,目标函数就不再是损失函数了,而是损失函数加惩罚项…
第十五节L1和L2正则几何解释和Ridge,Lasso,Elastic Net回归 上一节中我们讲解了L1和L2正则的概念,知道了L1和L2都会使不重要的维度权重下降得多,重要的维度权重下降得少,引入L1正则会使不重要的w趋于0(达到稀疏编码的目的),引入L2正则会使w的绝对值普遍变小(达到权值衰减的目的).本节的话我们从几何角度再讲解下L1和L2正则的区别. L1正则是什么?|W1|+|W2|,假如|W1|+|W2|=1,也就是w1和w2的绝对值之和为1 .让你画|W1|+|W2|=1的图形,…
搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不到万不得已,我们也还是宁可用L2正则,因为L2正则计算起来方便得多... 正则化项不应该以正则化的表面意思去理解,应该翻译为规则化才对! 一般回归分析中回归ww表示特征的系数,从上式可以看到正则化项是对系数做了处理(限制).L1正则化和L2正则化的说明如下: L1正则化是指权值向量ww中各个元素的绝…
概述 线性回归拟合一个因变量与一个自变量之间的线性关系y=f(x).       Spark中实现了:       (1)普通最小二乘法       (2)岭回归(L2正规化)       (3)Lasso(L1正规化).       (4)局部加权线性回归       (5)流式数据可以适用于线上的回归模型,每当有新数据达到时,更新模型的参数,MLlib目前使用普通的最小二乘支持流线性回归.除了每批数据到达时,模型更新最新的数据外,实际上与线下的执行是类似的. 本文采用的符号: 拟合函数   …