网上看到关于数据降维的文章不少,介绍MDS的却极少,遂决定写一写. 考虑一个这样的问题.我们有n个样本,每个样本维度为m.我们的目标是用不同的新的k维向量(k<<m)替代原来的n个m维向量,使得在新的低维空间中,所有样本相互之间的距离等于(或最大程度接近)原空间中的距离(默认欧氏距离). 举个栗子:原来有3个4维样本(1,0,0,3),(8,0,0,5),(2,0,0,4),显然我们可以用三个新的二维样本(1,3),(8,5),(2,4)来保持维度变小并相互之间距离不变. 那么问题来了,如果不…