[BZOJ 3992] [SDOI 2015] 序列统计】的更多相关文章

[BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT) 题面 小C有一个集合S,里面的元素都是小于质数M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个.小C认为,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi.另外,小C认为这个…
这个题最暴力的搞法就是这样的: 设 $Dp[i][j]$ 为前 $i$ 个数乘积为 $j$ 的方案数. 转移的话就不多说了哈... 当前复杂度 $O(nm^2)$ 注意到,$M$ 是个质数,就说明 $M$ 有原根并且我们可以很快的求出来. 于是对于 $1\rightarrow M-1$ 中的每一个数都可以表示成原根的某次幂. 于是乘法可以转化为原根的幂的加法, 转移的时候就相当于做多项式乘法了. 我们再注意到,$1004535809 = 479 \times 2^{21} + 1$ 并且是个质数…
Description 传送门 Solution [一] 设 \(f[i][j]\) 表示前 \(i\) 个数的乘积在模 \(p\) 意义下等于 \(j\) 的方案数,有 \[ f[i][j]=\sum_{k=0}^{p-1}f[i-1][k]\cdot h[j\cdot k^{-1}] \] 其中 \(h[i]\) 表示 \(S\) 中模 \(p\) 等于 \(i\) 的元素个数. [二] 设 \(g\) 为模数 \(p\) 的原根,根据原根的性质可知 \(g^1\cdots g^{p-1}\…
Description 题库链接 给出集合 \(S\) ,元素都是小于 \(M\) 的非负整数.问能够生成出多少个长度为 \(N\) 的数列 \(A\) ,数列中的每个数都属于集合 \(S\) ,并且 \[\prod_{i=1}^N A_i\equiv x \pmod{M}\] 答案对 \(1004535809\) 取模. \(1\leq N\leq 10^9,3\leq M\leq 8000, M 为质数,0\leq x\leq M-1\) Solution 显然能够得到 \(DP\) 的解法…
4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 653  Solved: 320 Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第一行包含一个整数T,表示数据组数.第2到第T+1行每行包含三个整数N.L和R,N.L和R的意义如题所述. Output 输出包含T行,每行有一个数字,表示你所求出的答案对106+3…
Description Alice想要得到一个长度为 \(n\) 的序列,序列中的数都是不超过 \(m\) 的正整数,而且这 \(n\) 个数的和是 \(p\) 的倍数. Alice还希望,这 \(n\) 个数中,至少有一个数是质数. Alice想知道,有多少个序列满足她的要求. Input 一行三个数,\(n,m,p\). Output 一行一个数,满足Alice的要求的序列数量,答案对 \(20170408\) 取模. Sample Input 3 5 3 Sample Output 33…
这个题哎呀...细节超级多... 首先,我猜了一个结论.如果有一种排序方案是可行的,假设这个方案是 $S$ . 那么我们把 $S$ 给任意重新排列之后,也必然可以构造出一组合法方案来. 于是我们就可以 $O(2^n)$ 枚举每个操作进不进行,再去判断,如果可行就 $ans$ += $|S|!$. 然而怎么判断呢? 我们按照操作种类从小到大操作. 假设我们现在在决策第 $i$ 种操作并且保证之前之后不需要进行种类编号 $< i$ 的操作. 那么我们只考虑那些位置在 $2^i+1$ 的位置的那些数.…
首先我们可以二分答案. 假设当前二分出来的答案是 $Ans$ ,那么我们考虑用网络流检验: 设武器为 $X$,第 $i$ 个武器的攻击力为 $B_i$: 设机器人为 $Y$,第 $i$ 个机器人的装甲为 $A_i$: 设 $Map[i][j]$ 表示第 $i$ 个机器人是否能攻击第 $j$ 号机器人. 设源为 $S$,汇为 $T$,现在考虑连边: $S\rightarrow X_i$,容量为 $Ans * B_i$: $Y_i\rightarrow T$,容量为 $A_i$: $\forall…
3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 2275  Solved: 1090[Submit][Status][Discuss] Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数 列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助: 给定整数x,求所有可以生成出的,且满足数…
3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 466[Submit][Status][Discuss] Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S. 小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中…