隐马尔可夫(HMM)模型】的更多相关文章

1.安装依赖包hmmlearn 直接pip install hmmlearn可能会报错(安装这个模块需要使用C环境编译) 可以尝试用 conda install -c omnia hmmlearn安装. 2.详细关于HMM的知识可以看这篇博客…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 7. 词性标注 7.1 词性标注概述 什么是词性 在语言学上,词性(Par-Of-Speech, Pos )指的是单词的语法分类,也称为词类.同一个类别的词语具有相似的语法性质,所有词性的集合称为词性标注集.不同的语料库采用了不同的词性标注集,一般都含有形容词.动词.名词等常见词性.下图就是HanLP输出的一个含有词性的结构化句子. 我/r 的/u 希望/n 是/v 希望/v 张…
HMM的模型  图1 如上图所示,白色那一行描述由一个隐藏的马尔科夫链生成不可观测的状态随机序列,蓝紫色那一行是各个状态生成可观测的随机序列 话说,上面也是个贝叶斯网络,而贝叶斯网络中有这么一种,如下图: 代表:c确定时a和b独立.(c为实心圆代表:c已经被确定) 这时,如果把z1看成a,x1看成b,z2看成c的话,则因为第一个图的z1是不可观测的(所以z1是空心圆),也就是没确定,则x1和z2就一定有联系. 进一步,如果把z2.x2合在一起看成c的话,则x1和z2.x2就一定有联系,则x1和x…
最近工作需要优化LSTM-CRF经典模型中的维特比解码部分,发现对维特比一直是个模糊概念,没有get到本质,搜了一圈,发现一篇好文,mark 博主不让转载,mark个地址吧: https://blog.csdn.net/xueyingxue001/article/details/52396494…
1.隐马尔可夫HMM模型 一个隐马尔可夫模型可以表示为\[\lambda=\{A,B,\pi\}\]具体就不说了,比较基本. 2.HMM模型的三个基本问题 1.概率计算问题:给定\(\lambda\)和观测序列\(\{x_{i}\}\),求\(P(x_{i}| \lambda)\).主要方法是前向计算法或后向计算法 2.学习算法问题:对于给定的一个观察值序列,调整参数λ,使得观察值出现的概率p(σ|λ)最大 a.有隐变量,有监督时:HMM b.有隐变量,无监督:Baum-Welch c.无隐变量…
1. 前言 隐马尔科夫HMM模型是一类重要的机器学习方法,其主要用于序列数据的分析,广泛应用于语音识别.文本翻译.序列预测.中文分词等多个领域.虽然近年来,由于RNN等深度学习方法的发展,HMM模型逐渐变得不怎么流行了,但并不意味着完全退出应用领域,甚至在一些轻量级的任务中仍有应用.本系列博客将详细剖析隐马尔科夫链HMM模型,同以往网络上绝大多数教程不同,本系列博客将更深入地分析HMM,不仅包括估计序列隐状态的维特比算法(HMM解码问题).前向后向算法等,而且还着重的分析HMM的EM训练过程,并…
什么是熵(Entropy) 简单来说,熵是表示物质系统状态的一种度量,用它老表征系统的无序程度.熵越大,系统越无序,意味着系统结构和运动的不确定和无规则:反之,,熵越小,系统越有序,意味着具有确定和有规则的运动状态.熵的中文意思是热量被温度除的商.负熵是物质系统有序化,组织化,复杂化状态的一种度量. 熵最早来原于物理学. 德国物理学家鲁道夫·克劳修斯首次提出熵的概念,用来表示任何一种能量在空间中分布的均匀程度,能量分布得越均匀,熵就越大. 一滴墨水滴在清水中,部成了一杯淡蓝色溶液 热水晾在空气中…
HMM(隐马尔科夫模型)基本原理及其实现 HMM基本原理 Markov链:如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程.马尔可夫链是时间和状态参数都离散的马尔可夫过程.HMM是在Markov链的基础上发展起来的,由于实际问题比Markov链模型所描述的更为复杂,观察到的时间并不是与状态一一对应的,而是通过一组概率分布相联系,这样的模型称为HMM.HMM是双重随机过程:其中之一是Markov链,这是基本随机过程,它描述状态的转移,是隐含的.…
隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价值.平时,经常能接触到涉及 HMM 的相关文章,一直没有仔细研究过,都是蜻蜓点水,因此,想花一点时间梳理下,加深理解,在此特别感谢 52nlp 对 HMM 的详细介绍. 考虑下面交通灯的例子,一个序列可能是红-红/橙-绿-橙-红.这个序列可以画成一个状态机,不同的状态按照这个状态机互相交替,每一个状…
http://www.zhihu.com/question/20962240 Yang Eninala杜克大学 生物化学博士 线性代数 收录于 编辑推荐 •2216 人赞同 ×××××11月22日已更新××××× 隐马尔可夫(HMM)好讲,简单易懂不好讲.我认为 @者也的回答没什么错误,不过我想说个更通俗易懂的例子.我希望我的读者不是专家,而是对这个问题感兴趣的入门者,所以我会多阐述数学思想,少写公式.霍金曾经说过,你多写一个公式,就会少一半的读者.所以时间简史这本关于物理的书和麦当娜关于性的书…