bzoj 2011】的更多相关文章

决策单调性,对于一个1D/1D(状态是一维,转移也是一维)的DP,如果DP的决策具有单调性,那么就可以做到O(nlogn)的复杂度完成DP. 感谢<1D/1D  动态规划优化初步>的作者. /************************************************************** Problem: 2216 User: idy002 Language: C++ Result: Accepted Time:4916 ms Memory:14476 kb ***…
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4805  Solved: 2325[Submit][Status][Discuss] Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是小X的生日,小 W 想送一个数给他作为生日礼物.当然他不能送一个小X讨厌…
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([1, x]\)中有多少数不是平方数的倍数,设这个答案为\(Q(x)\). 根据容斥原理,\(Q(x)\)等于: [1, x] 0个质数的平方的倍数的数量(1的倍数的数量) [1, x] 1个质数的平方的倍数的数量 (如\(3^2=9\)的倍数的数量) [1, x] 2个质数的平方的倍数的数量 (如\…
[BZOJ 2299][HAOI 2011]向量 Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y). 说明:这里的拼就是使得你选出的向量之和为(x,y) Input 第一行数组组数t,(t<=50000) 接下来t行每行四个整数a,b,x,y (-2109<=a,b,x,y<=2109) Output t行每行为Y…
bzoj 2441 [中山市选2011]小W的问题 Description 有一天,小W找了一个笛卡尔坐标系,并在上面选取了N个整点.他发现通过这些整点能够画出很多个"W"出来.具体来说,对于五个不同的点(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5),如果满足: ·x1 < x2 < x3 < x4 < x5 ·y1 > y3 > y2 ·y5 > y3 > y4 则称它们构成一个&quo…
题目描述 lanzerb的部落在A国的上部,他们不满天寒地冻的环境,于是准备向A国的下部征战来获得更大的领土. A国是一个M*N的矩阵,其中某些地方是城镇,某些地方是高山深涧无人居住.lanzerb把自己的部落分成若干支军队,他们约定: 1. 每支军队可以从任意一个城镇出发,并只能从上往向下征战,不能回头.途中只能经过城镇,不能经过高山深涧. 2. 如果某个城镇被某支军队到过,则其他军队不能再去那个城镇了. 3. 每支军队都可以在任意一个城镇停止征战. 4. 所有军队都很奇怪,他们走的方法有点像…
[BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[gcd(i,j)=k]\) \(T,a,b,c,d,k\le 5\times 10^4\) 分析 \(O(n^2)\)暴力显然是不可行的,我们考虑优化. 首先易得\(k\times gcd(i,j)=gcd(ki,kj)\),那么我们可以把a,b,c,d都除上k,问题就变成了\(\sum _{i=a…
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Status][Discuss] Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是小X的生日,小 W 想送一个数给他作为生日礼物.当然他不能送一个小X讨厌…
莫比乌斯函数/容斥原理 PoPoQQQ讲义引入例题= = 比较水……就是莫比乌斯函数的简单应用,也可理解为乱容斥一下…… 二分答案——>求1~x有多少个无平方因子的数Q(x). 引用一下PoPoQQQ的题解: •根据容斥原理可知 对于sqrt(x)以内所有的质数 有 •  x以内的无平方因子数 •=0个质数乘积的平方的倍数的数的数量(1的倍数) •-每个质数的平方的倍数的数的数量(9的倍数,25的倍数,...) •+每2个质数乘积的平方的倍数的数的数量(36的倍数,100的倍数,...)-...…
2346: [Baltic 2011]Lamp Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 428  Solved: 179[Submit][Status][Discuss] Description 2255是一个傻X,他连自己家灯不亮了都不知道.某天TZ大神路过他家,发现了这一情况,于是TZ开始行侠仗义了.TZ发现是电路板的问题,他打开了电路板,发现线路根本没有连上!!于是他强大的脑力可以使某个格子上的线路从\变为/,或者从/变为\.2255…