[CUDA] CUDA to DL】的更多相关文章

又是一枚祖国的骚年,阅览做做笔记:http://www.cnblogs.com/neopenx/p/4643705.html 这里只是一些基础知识.帮助理解DL tool的实现. “这也是深度学习带来的一个全新领域,它要求研究者不仅要理论强,建模强,程序设计能力也要过硬,不能纸上谈兵.” CUDA的广泛应用造就了GPU计算专用Tesla GPU的崛起. 随着显卡的发展,GPU越来越强大,而且GPU为显示图像做了优化.在计算上已经超越了通用的CPU.如此强大的芯片如果只是作为显卡就太浪费了,因此N…
CUDA Libraries简介 上图是CUDA 库的位置,本文简要介绍cuSPARSE.cuBLAS.cuFFT和cuRAND,之后会介绍OpenACC. cuSPARSE线性代数库,主要针对稀疏矩阵之类的. cuBLAS是CUDA标准的线代库,不过没有专门针对稀疏矩阵的操作. cuFFT傅里叶变换 cuRAND随机数 CUDA库和CPU编程所用到的库没有什么区别,都是一系列接口的集合,主要好处是,只需要编写host代码,调用相应API即可,可以节约很多开发时间.而且我们完全可以信任这些库能够…
Section 0 :Induction of CUDA CUDA是啥?CUDA®: A General-Purpose Parallel Computing Platform and Programming Model 为什么用显卡就可以实现比CPU高得多的运算性能呢?这要从GPU的结构讲起: GPU天生是为了图像处理而设计的,讲道理的话它能处理一些简单的运算工作(比如单独的顶点和线段).但是在一个GPU中包含了许多个流处理器(Stream Processor),这些流处理器都可以并行工作.I…
1. 前言 本教程使用的系统是Ubuntu 14.04 LTS 64-bit,使用的CUDA版本为7.5,使用的NVIDIA驱动版本为352. 如果您使用的Pascal架构显卡,如GTX1080或者新ttx,则必须使用更高版本的驱动和CUDA 8.本教程不适于这种情况,请不要尝试. Ubuntu每两年发布一次LTS版本(即长期支持版),所以现在已经发布了16.04 LTS版本.鉴于很多程序在新系统下的兼容性还没有测试,本教程依然介绍的是上一个LTS版本上安装Caffe的方法,随后会推出针对于Ub…
目录: 1.什么是CUDA 2.为什么要用到CUDA 3.CUDA环境搭建 4.第一个CUDA程序 5. CUDA编程 5.1. 基本概念 5.2. 线程层次结构 5.3. 存储器层次结构 5.4. 运行时API 5.4.1. 初始化 5.4.2. 设备管理 5.4.3. 存储器管理 5.4.3.1. 共享存储器 5.4.3.2. 常量存储器 5.4.3.3. 线性存储器 5.4.3.4. CUDA数组 5.4.4. 流管理 5.4.5. 事件管理 5.4.6. 纹理参考管理 5.4.6.1.…
chmod Document 这里Document是一个文件夹,文件夹中还有好多子文件,可以发现执行了这条指令以后,其子文件夹的权限并没有改变. 要想改变其子文件夹的权限,应该执行 Document/ 对于想要编译内核或者安装瑞昱网卡驱动的人来说,需要安装对应系统内核的headersudo apt-get install linux-headers-generic 查看pci设备和驱动: sudo lspci -knn 安装pure-ftpd服务器端 sudo apt-get install p…
很多时候,我们是基于python进行模型的设计和运行,可是基于python本身的速度问题,使得原生态python代码无法满足生产需求,不过我们可以借助其他编程语言来缓解python开发的性能瓶颈.这里简单介绍个例子,以此完成如何先基于cuda编写瓶颈函数,然后在将接口通过cpp进行封装,最后以库的形式被python调用. 1 cpp+python 首先,介绍下如何python调用cpp的代码.这里极力推荐pybind11.因为pybind11是一个轻量级,只包含头文件的库,他可以在C++中调用p…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com ubuntu 16.04用了1年多了,18.04版已经发布也半年了,与时俱进,重装Linux系统,这里主要记录下gpu加速pytorch 1.0.0版本的安装. 一.工具安装 sudo apt-get install gcc sudo apt-get install g++ sudo apt-get install make 二.禁用nouveau sudo gvim /etc/modprobe.d…
CPU擅长逻辑处理控制,GPU适合高强度的并行计算任务,为什么会存在这种差别?今天搜集了些相关资料,摘抄总结如下. 一.什么是GPU GPU这个概念是由Nvidia公司于1999年提出的.GPU是显卡上的一块芯片,就像CPU是主板上的一块芯片.那么1999年之前显卡上就没有GPU吗?当然有,只不过那时候没有人给它命名,也没有引起人们足够的重视,发展比较慢. 自Nvidia提出GPU这个概念后,GPU就进入了快速发展时期.简单来说,其经过了以下几个阶段的发展: 1)仅用于图形渲染,此功能是GPU的…
1. 安装驱动 :sudo apt-get install nvidia- 2. 安装cuda : cuda 文件中包含驱动程序,因此在安装过程中当被问及是否安装驱动时,选择no 3. 安装cudnn: 下载cudnn, 执行一下命令 tar -xzvf cudnn-8.0-linux-x64-v6.0.tgzsudo cp cuda/include/cudnn.h /usr/local/cuda/includesudo cp cuda/lib64/libcudnn* /usr/local/cu…