抄袭了一片文章,进行少量修改:http://www.gageet.com/2014/09203.php       作者:Christian Szegedy( google )  刘伟(北卡罗来纳  大学)  贾清扬(Google)  ....... (.......) GoogleNet的研究点是引入了Inception结构,构建网络中的网络,使网络稀疏化,使CNN网络更像一个"神经元-网络".因此可以实现:看起来更深,其实更稀疏,全局性能更好的网络.在数学上表示为,把稀疏网络转化成…
本文相对于摘抄的文章已经有大量的修改,如有阅读不适,请移步原文. 以下摘抄转自于维基:基于深度学习的图像识别进展百度的若干实践 从没有感知域(receptive field) 的深度神经网络,到固定感知域的卷积神经网络,再到可变感知域的递归神经网络,深度学习模型在各种图像识别问题中不断演进. 曾经爆炸式增长的参数规模逐步得到有效控制,人们将关于图像的先验知识逐渐用于深度学习,大规模并行化计算平台愈加成熟,这些使我们能够从容应对大数据条件下的图像识别问题. CNN的二维处理递进结构天然适合图像处理…
为了保持文章系列的连贯性,参考这个文章: DNN结构演进History-LSTM_NN 对于LSTM的使用:谷歌语音转录背后的神经网络 摘要: LSTM使用一个控制门控制参数是否进行梯度计算,以此避免梯度消失或者爆炸. LSTM的优势与不足     LSTM的不足 LSTM的高效截断版本并不能很轻松的解决"强延迟异或"类的问题. LSTM的每个存储单元块需要一个输入门和一个输出门,而这在其他的循环方法中并不是必需的. 常数误差流通过存储单元内部的"Constant Error…
前言 语音识别和动作识别(Action.Activities)  等一些时序问题,通过微分方式可以视为模式识别方法中的变长模式识别问题.语音识别的基元为音素.音节,字母和句子模式是在时间轴上的变长序列:Action的基元为Pose,action的识别为pose的时间序列模式. 我们跟随时间的脚步,试图解释现在.理解过去.甚至预测未来........ 在概率分析的层面,RNN通过循环结构展开处理变长问题,对不同的长度训练不同的概率模型,并以参数的形式存储在网络中,成为天生适合处理时序分析的复杂模型…
前言: CNN在图像处理领域的极大成功源于CNN的二维递进映射结构,通过训练多层卷积核来进行特征提取函数训练,在二维图像的稀疏表达和语义关联分析方面有天生的结构优势.而涉及时序问题的逻辑序列分析-边长序列分析,需要引入适合解决其问题的方法. 引入RNN:在深度学习领域,传统的前馈神经网络(feed-forward neural net,简称FNN)具有出色的表现,取得了许多成功,它曾在许多不同的任务上--包括手写数字识别和目标分类上创造了记录.甚至到了今天,FNN在解决分类任务上始终都比其他方法…
(GoogLeNet)Going deeper with convolutions Inception结构 目前最直接提升DNN效果的方法是increasing their size,这里的size包括depth和width两方面.在有足够的labeled training data 时这种方法是最简单以及稳妥的方法来获得一个高质量的模型.但是往往实际中大的网络会有更多的参数,当training data数量很少时,很容易出现overfitting,并且大的网络需要的计算资源也是更多.这是需要将…
论文地址 在该论文中作者提出了一种被称为Inception Network的深度卷积神经网络,它由若干个Inception modules堆叠而成.Inception的主要特点是它能提高网络中计算资源的利用率,这得益于网络结构的精心设计(基于 Hebbian principle 和 the intuition of multi-scale processing ),使得网络在增加宽度和深度的同时又能保持计算开销不变.作者在论文中还介绍了 Inception 的一个应用例子--GoogLenet,…
前言 谷歌推出的NASNet架构,用于大规模图像分类和识别.NASNet架构特点是由两个AutoML设计的Layer组成--Normal Layer and Reduction Layer,这样的效果是不再需要相关专家用human knowledge来搭建卷积网络架构,直接用RNN把Hyperparameter计算出来,这样就实现了网络结构自动学习. 论文:Learning Transferable Architectures for Scalable Image Recognition 强化学…
目录 代码 Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]. computer vision and pattern recognition, 2015: 1-9. @article{szegedy2015going, title={Going deeper with convolutions}, author={Szegedy, Christian and Liu, Wei and Jia, Yangqing…
  论文链接:Going deeper with convolutions 代码下载: Abstract We propose a deep convolutional neural network architecture codenamed Inception that achieves the (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing res…
致网友:如果你不小心检索到了这篇文章,请不要看,因为很烂.写下来用于作为我的笔记. 2014年,在LSVRC14(large-Scale Visual Recognition Challenge)中,Google团队凭借 googLeNet 网络取得了 the new state of the art. 论文 Going deeper with convolutions 就是对应该网络发表的一篇论文: 主要内容: 主要围绕着一个 Inception architecture 怎么提出讲的: 不明…
前言:模式识别问题 模式函数是一个从问题定义域到模式值域的一个单射. 从简单的贝叶斯方法,到只能支持二分类的原始支持向量机,到十几个类的分类上最好用的随机森林方法,到可以支持ImageNet上海量1860个类且分类精度极高的InceptionV4(参考:CNNhttp://blog.csdn.net/wishchin/article/details/45286805),其模式函数为 f( x ) = { X-->Y }|{  X = ImageNet的图片,Y={ 1860个类的标记 }  }…
目录 0. 论文链接 1. 概述 2. inception 3. GoogleNet 参考链接 @ 0. 论文链接 1. 概述   GoogLeNet是谷歌团队提出的一种大体保持计算资源不变的前提下,通过精妙的设计来增加网络的深度和宽度,基于Hebbian法则和多尺度处理来进行设计,在ILSVRC2014中获得了分类和检测第一的好成绩.   通过实验,可以发现神经网络的效果可以通过网络更深.更宽来提升.但也有两个很明显的问题:过拟合和极大的增加了计算量,作者想通过增加网络的稀疏性的同时加深与加宽…
本文采用的GoogLenet网络(代号Inception)在2014年ImageNet大规模视觉识别挑战赛取得了最好的结果,该网络总共22层. Motivation and High Level Considerations 提升深度神经网络的一个最直接的方法就是增加网络的大小.这包括增加网络的深度(网络的层数)和宽度(每一层神经元的个数).这种简单粗暴的方法有两个缺点:1)更大网络意味着更多数量的参数,这非常容易导致过拟合.2)更大的网络意味着要使用更多的计算资源. 解决这两个问题的一个基本的…
从LeNet-5开始,cnn就有了标准的结构:stacked convolutional layers are followed by one or more fully-connected layers.对于Imagenet这种大的数据集,趋势是增加层数和层的大小,用dropout解决过拟合. 1×1卷积核在Inception中大量使用,两个作用:dimension reduction and rectified linear activation(即增加非线性)(维度降低减少参数:并增加模型…
目的: 提升深度神经网络的性能. 一般方法带来的问题: 增加网络的深度与宽度. 带来两个问题: (1)参数增加,数据不足的情况容易导致过拟合 (2)计算资源要求高,而且在训练过程中会使得很多参数趋向于0,浪费计算资源. 解决方法: 使用稀疏连接替代稠密结构. 理论依据(Arora):一个概率分布可以用一个大的稀疏的深度神经网络表示,最优的结构的构建通过分析上层的激活状态的统计相关性,并把输出高度相关的神经元聚合.这与生物学中Hebbian法则“有些神经元响应基本一致,即同时兴奋或抑制”一致. 存…
目录 Abstract Introduction First of All Inception Depth Related Work Motivation and High Level Considerations 增加网络的深度和宽度会带来两个问题: 解决思路 不利因素 解决方法 Starting 注意 Architecture Details The Main Idea Inception GoogLeNet Training Methodology Abstract 该网络结构可以在增加网…
论文原址:https://arxiv.org/pdf/1409.4842.pdf 代码连接:https://github.com/titu1994/Inception-v4(包含v1,v2,v4)  摘要 本文提出了一个深层的卷积网络结构-Inception,该结构的主要特点是提高了网络内部计算资源的利用率.在预估计算资源消耗量不变的情况下增加网络的深度及宽度.为了进行有效的优化,结构决策基于Hebbian原理及多尺寸处理操作.本文思想的一个经典实现是GoogLeNet,网络的深度为22层,该网…
1. 摘要 作者提出了一个代号为 Inception 的卷积神经网络架构,这也是作者在 2014 年 ImageNet 大规模视觉识别挑战赛中用于分类和检测的新技术. 通过精心的设计,该架构提高了网络内计算资源的利用率,因而允许在增加网络的深度和宽度的同时保持计算预算不变. 在作者提交的 ILSVRC14 中使用的一个特定的模型称为 GoogLeNet ,一个 22 层深的网络,在分类和检测的背景下对其性能进行了评估. 2. 介绍 在过去三年中,卷积神经网络在图像识别和物体检测领域取得了巨大的进…
前言: 文章:CNN的结构分析-------:  文章:历年ImageNet冠军模型网络结构解析-------: 文章:GoogleLeNet系列解读-------: 文章:DNN结构演进History-CNN-GoogLeNet :Going Deeper with Convolutions :文章:Google最新开源Inception-ResNet-v2,借助残差网络进一步提升图像分类水准-----附有代码解析: 文章:深入浅出--网络模型中Inception的作用与结构全解析  科普一下…
一早发现caffe2的较成熟的release版发布了(the first production-ready release),那么深度学习平台在之后一段时间也是会出现其与tensorflow相互竞争的局面. 从打开这个caffe2的官网就会发现,有了Facebook的支持,连界面也好看多了.不过再仔细看看,觉得又和tensorflow有一丝像,从内到外. 类似于TensorFlow的构建,Caffe2默认包含了LSTM单元,即可以基于Caffe构建RNN和LSTM网络,用于处理变长模式识别问题.…
前言: 一般所称的LSTM网络全叫全了应该是使用LSTM单元的RNN网络. 原文:(Caffe)LSTM层分析 入门篇:理解LSTM网络 LSTM的官方简介: http://deeplearning.net/tutorial/lstm.html#id1 GitHub上的Caffe_LSTM:  https://github.com/junhyukoh/caffe-lstm RNN-LSTM公式推导:http://blog.csdn.net/Dark_Scope/article/details/4…
tensorflow+inceptionv3图像分类网络结构的解析与代码实现 论文链接:论文地址 ResNet传送门:Resnet-cifar10 DenseNet传送门:DenseNet SegNet传送门:Segnet-segmentation 深度学习的火热,使得越来越多的科研人员投入到其中.而作为各种应用类型的网络基础,图像分类的网络结构有许多,从AlexNet开始,到VGG-Net,到GoogleNet,到ResNet,denseNet等.网络结构在不断地改进,也在不断地趋于稳定.新的…
Deep Learning Papers Translation(CV) Image Classification AlexNetImageNet Classification with Deep Convolutional Neural Networks 中文版 中英文对照 VGGVery Deep Convolutional Networks for Large-Scale Image Recognition 中文版 中英文对照 ResNetDeep Residual Learning fo…
前言 本文主要介绍2012-2015年的一些经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4,ResNetv1-v2. 在论文笔记:CNN经典结构2中我介绍了2016-2017年的几个经典CNN结构,WideResNet,FractalNet,DenseNet,ResNeXt,DPN,SENet.另外,在ImageNet历年冠军和相关CNN模型中,我简单介绍了ImageNet和历年冠军. AlexNet 贡献:ILSVRC2012冠军,展现出了…
http://blog.csdn.net/diamonjoy_zone/article/details/70576775 参考: 1. Inception[V1]: Going Deeper with Convolutions 2. Inception[V2]: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 3. Inception[V3]: Rethink…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 关于卷积神经网络CNN,网络和文献中有非常多的资料,我在工作/研究中也用了好一段时间各种常见的model了,就想着简单整理一下,以备查阅之需.如果读者是初接触CNN,建议可以先看一看"Deep Learning(深度学习)学习笔记整理系列"中关于CNN的介绍[1],是介绍我们常说的Lenet为例,相信会对初学者有帮助. Le…
在前面我们讲述了DNN的模型与前向反向传播算法.而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一.CNN广泛的应用于图像识别,当然现在也应用于NLP等其他领域,本文我们就对CNN的模型结构做一个总结. 在学习CNN前,推荐大家先学习DNN的知识.如果不熟悉DNN而去直接学习CNN,难度会比较的大.这是我写的DNN的教程: 深度神经网络(DNN)模型与前向传播算法 深度神经网络(DNN)反向传播算法(BP) 深度…
前面讲了LeNet.AlexNet和Vgg,这周来讲讲GoogLeNet.GoogLeNet是由google的Christian Szegedy等人在2014年的论文<Going Deeper with Convolutions>提出,其最大的亮点是提出一种叫Inception的结构,以此为基础构建GoogLeNet,并在当年的ImageNet分类和检测任务中获得第一,ps:GoogLeNet的取名是为了向YannLeCun的LeNet系列致敬. 关于深度网络的一些思考 在本系列最开始的几篇文…
Inception v1 论文:<Going deeper with convolutions> 在较低的层(靠近输入的层)中,相关单元更侧重提取局部区域的信息.因此使用1x1的特征可以保存这些特征,从而与其他支路提取的特征进行融合. 3x3和5x5的卷积是想要提取不同尺度的特征,3x3卷积和5x5卷积之前的1x1的卷积作用是减少channel,从而降低参数量. 论文中说到之所以使用pooling,是因为pooling操作在目前最好的卷积网络中是必要的,个人理解是pooling操作可以增强网络…