洛谷 P1586 四方定理】的更多相关文章

P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然还有其他的分解方案,25=4^{2}+3^{2}25=42+32和25=5^{2}25=52.给定的正整数nn,编程统计它能分解的方案总数.注意:25=4^{2}+3^{2}25=42+32和25=3^{2}+4^{2}25=32+42视为一种方案. 输入输出格式 输入格式: 第一行为正整数tt(t…
P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=1​2​​+2​2​​+2​2​​+4​2​​,当然还有其他的分解方案,25=4^{2}+3^{2}25=4​2​​+3​2​​和25=5^{2}25=5​2​​.给定的正整数nn,编程统计它能分解的方案总数.注意:25=4^{2}+3^{2}25=4​2​​+3​2​​和25=3^{2}+4^{2}25=3​2​​+4​2​…
题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案,25=4^{2}+3^{2}25=42+32 和25=5^{2}25=52 .给定的正整数nn ,编程统计它能分解的方案总数.注意:25=4^{2}+3^{2}25=42+32 和25=3^{2}+4^{2}25=32+42 视为一种方案. 输入输出格式 输入格式: 第一行为正整数tt (t\le…
题目 这个题的本质是动态规划中的背包问题. 为什么会想到背包呢. 因为往往方案数不是排列组合就是递推或者是dp,当然还有其他的可能.我们可以把一个数的代价当成这个数的平方,价值就是一个方案数.由于这个数可以取无数次所以这个背包问题即为一个完全背包.  因此我们可以预处理出从1到数据范围的所有数的方案. 这个过程也是一个DP的过程.我们先把1到sqrt(数据范围)的数的平方数存到data数组中.然后再套用背包公式 因为最大的平方数是32768.所以最大的数是181.因此我们可以想象成共有181个物…
题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案,25=4^{2}+3^{2}25=42+32 和25=5^{2}25=52 .给定的正整数nn ,编程统计它能分解的方案总数.注意:25=4^{2}+3^{2}25=42+32 和25=3^{2}+4^{2}25=32+42 视为一种方案. 输入输出格式 输入格式: 第一行为正整数tt (t\le…
题面 首先你需要知道这条定理: C(n,m)=C(n%p,m%p)*C(n/p,m/p); 这样可以递归实现: 注意坑点:是C(n+m,m),并不是C(n,m); #include <bits/stdc++.h> using namespace std; long long n,m,p; inline long long KSM(long long a,long long b) { ; while(b){ ) res=res*a%p; a=a*a%p; b/=; } return res%p;…
题目链接 此题使用DP.设f[i][j]表示数i用j个数表示,则对于所有的k<=sqrt(i),有 f[i][j]=∑f[i-k*k][j-1] 但是这样会有重复情况.所以先枚举k,再枚举i和j. 代码如下 #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<cctype> inline long long read(){ ,f=; ch…
题意 题解 首先吐槽一下体面的第一句话.反正我不知道(可能是因为我太菜了) 可能没有睡醒,没看出来是个背包. 但告诉是个背包了应该就好做了. #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<algorithm> using namespace std; int t,n; ][]; int main(){ dp[][]=; ;i*i<…
[数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个整数T(T\le 10T≤10),表示数据组数 第二行开始共T行,每行三个数n m p,意义如上 [输出格式] 共T行,每行一个整数表示答案. [输入样例] 21 2 52 1 5 [输出样例] 33 >>>>分析 emmmm模板题还是不用分析了吧 卢卡斯定理解决的就是组合数C(n,m…
前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个同余方程合并,具体会在下面提到. 但是,使用仍有限制,那就是\(x\)的系数必须为\(1\). 没关系,把它再扩展一下 题目及实现 洛谷题目传送门 题意分析 显然,如果我们能干掉所有龙,那么每一次使用的剑的攻击力是已知的,设为\(k\).那么对于每一条龙,攻击次数\(x\)必须满足\(kx\equi…
洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d|N}C(N,d)}(\mod999911659)\) 乍一看,指数这么大,要怎么处理好呢?上费马小定理. 平时用费马小定理求逆元用多了,\(a^{p-2}\equiv inv(a)(\mod p)\),搞得蒟蒻差点忘了它原本的样子\(a^{p-1}=1(\mod p)\),那原式的指数\(\sum…
洛谷题目传送门 90分WA第二个点的看过来! 简要介绍一下中国剩余定理 中国剩余定理,就是用来求解这样的问题: 假定以下出现数都是自然数,对于一个线性同余方程组(其中\(\forall i,j\in[1,k],i\neq j,b_i\)与\(b_j\)互质) \(\begin{cases}n\equiv a_1(\mod b_1)\\n\equiv a_2(\mod b_2)\\......\\n\equiv a_k(\mod b_k)\end{cases}\) 设\(lcm=\prod_{i=…
P3807 [模板]卢卡斯定理 洛谷智推模板题,qwq,还是太弱啦,组合数基础模板题还没做过... 给定n,m,p($1\le n,m,p\le 10^5$) 求 $C_{n+m}^{m}\ mod\ p$ $lucas$定理: $C_{n}^{m}=C_{n\%p}^{m\%p}\times C_{n/p}^{m/p}\mod p$ 相当于把$n,m$写成$p$进制数($A_1,A_2\dotso A_k$),($B_1,B_2\dotso B_k$) $C_{n}^{m}=C_{A_1}^{…
洛谷题面传送门 首先很明显题目暗示我们先求出符合条件的戒指数量,再计算出由这些戒指能够构成的项链的个数,因此考虑分别计算它们.首先是计算符合条件的戒指数量,题目中"可以通过旋转重合的戒指视作相同"可以让我们联想到 Polya 定理,具体来说根据 Polya 那套理论,符合条件的戒指个数就是 \(C=\dfrac{1}{m}\sum\limits_{d\mid n}R^d\varphi(\dfrac{n}{d})\),\(\mathcal O(\sqrt{n})\) 地枚举因子并计算 \…
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理都非常到位的总结 推荐ppl巨佬的简明易懂的总结 FFT 多项式乘法的蹊径--点值表示法 一般我们把两个长度为\(n\)的多项式乘起来,就类似于做竖式乘法,一位一位地乘再加到对应位上,是\(O(n^2)\)的 如何优化?直接看是没有思路的,只好另辟蹊径了. 多项式除了我们常用的系数表示法\(y=a_…
洛谷题目传送门 先安利蒟蒻仍在施工的博弈论总结 首先根据题目,石子被两两分组了,于是根据SG定理,我们只要求出每一组的SG值再全部异或起来就好啦. 把每一对数看成一个ICG,首先,我们尝试构造游戏的状态转移DAG.把一堆石子拿掉,另一堆任意拆成两堆,等于说由状态\((a,b)\)可以转移到\(\{(c,d),c+d=a\)或\(c+d=b\}\) 一眼看不出来这是要干神马......然后开始打表.其实打表的方式可以更简单.首先,观察上式,对于每一个a,所有\(c+d=a\)的\((c,d)\)的…
BZOJ原题链接 洛谷原题链接 其实推导很简单,只不过我太菜了想不到...又双叒叕去看题解 简单写下推导过程. 原方程:\[\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{n!}\] 通分:\[\dfrac{x + y}{xy} = \dfrac{1}{n!}\] 十字相乘:\[(x + y) \times n! = xy\] 把\((x + y) \times n!\)移到右项:\[xy - (x + y) \times n! = 0\] 两边同时加上\((n!…
BZOJ原题链接 洛谷原题链接 可以将\(1\)和\(0\)的个数和看成是\(x\)轴坐标,个数差看成\(y\)轴坐标. 向右上角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(+1\),表示这一位为\(1\). 向右下角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(-1\),表示这一位为\(1\). 若不考虑题目中的限制,那么这就相当于从\((0, 0)\)出发,走\(n + m\)步到达\((n + m, n - m)\). 相当于从\(n + m\)步中选出\(n\)步向…
题目链接: 洛谷 BZOJ LOJ 题目大意:这么长的题面,就饶了我吧emmm 这题第一眼看上去没法列出同余方程组.为什么?好像不知道用哪把剑杀哪条龙…… 仔细一看,要按顺序杀龙,所以获得的剑出现的顺序也是固定的. 那么如果能把所有龙杀死,就能模拟出哪把剑杀那条龙了. (以下设所有除 $n,m$ 外的数的最大值为 $v$) $O(nm)$? 不,发现这里用剑的限制实际上是给出一个上界,来用lower_bound的. 插入也不要太暴力.我们想到什么?手写平衡树multiset! 这一部分复杂度是…
题目链接: 洛谷 题目大意:求同余方程组 $x\equiv b_i(mod\ a_i)$ 的最小正整数解. $1\leq n\leq 10^5,1\leq a_i\leq 10^{12},0\leq b_i\leq 10^{12},b_i<a_i$,保证有解,答案不超过 $10^{18}$. (其实我没打成方程组形式是因为我 $latex$ 太差) 既然是模板就直接讲方法.假设不一定有解. 方法:每次将前 $i-1$ 个方程合并后的方程与第 $i$ 个方程合并,直到 $n$ 个方程全部合并完.…
一道技巧性非常强的计数题,历年WC出得最好(同时可能是比较简单)的题目之一. 题目传送门:洛谷P5206. 题意简述: 给定 \(n, y\). 一张图有 \(|V| = n\) 个点.对于两棵树 \(T_1=G(V, E_1)\) 和 \(T_2=G(V, E_2)\),定义这两棵树的权值 \(F(E_1, E_2)\) 为 \(y\) 的 \(G'=(V,E_1\cap E_2)\) 的联通块个数次方. 即 \(F(E_1, E_2) = y^{n - |E_1\cap E_2|}\)(因为…
概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出一个$n$次多项式的逆元. 前置技能 快速数论变换(NTT),求一个数$x$在模$p$意义下的乘法逆元. 多项式的逆元 给定一个多项式$A(x)$,其次数为$deg_A$,若存在一个多项式$B(x)$,使其满足$deg_B≤deg_A$,且$A(x)\times B(x) \equiv 1 (mod…
[NOIP提高&洛谷P1024]一元三次方程求解 Description 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差的绝对值>=1.要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后2位. 提示:记方程f(x)=0,若存在2个数x1和x2,且x1<x2,f(x1)*f(x2)<0,则在(x1,x2)之间一定…
刚学的好玩算法,AC2题,非常开心. 其实很早就有教过,以前以为很难就没有学,现在发现其实很简单也很有用. 更重要的是我很好调试,两题都是几乎一遍过的. 介绍树链剖分前,先确保已经学会以下基本技巧: DFS序列,线段树/树状数组,LCA(最近公共祖先) DFS序列确保你能听懂以下环节,线段树/树状数组是维护序列的有力工具,而LCA涉及树上的很多基本问题. 经常会遇到这样的题目: 对于一棵树,给x到y的路径上的点/边都做一个操作,并且查询x到y的路径上的点/边的值. 如果不是x到y的路径,而是节点…
继续洛谷刷水日常,突然遇到一道不是很水的题目…… https://www.luogu.org/problem/show?pid=1445 题意:给定n(1<=n<=1000000),求方程1/x+1/y=1/n!的正整数解的个数. 思考了5min后,就去看题解了…… Qrc:这也太弱了…… [思路] 原方程可变形为: xy/(x+y)=n! xy-(x+y)n!=0,配方后,得: (x-n!)(y-n!)=(n!)^2 所以求出(n!)^2的因数个数即可,又由于因数定理(正整数的因数个数等于其…
洛谷 这题一看就是卡塔兰数. 因为\(cnt[1] \leq cnt[0]\),很显然的卡塔兰嘛! 平时我们推导卡塔兰是用一个边长为n的正方形推的, 相当于从(0,0)点走到(n,n)点,向上走的步数不能超过向右走,求出的方案数就是卡塔兰数. 即总方案\(-\)不合法方案 -> \(\frac{C_{2n}^{n}}{n+1}\). 这题只是改成了从(0,0)走到(n,m)点,那么就是:\(C^{m+n}_{n}-C^{m-1}_{m+n}\). 因为涉及到除法取模,所以要求逆元. 刚刚好201…
洛谷P1731:https://www.luogu.org/problemnew/show/P1731 思路 三重剪枝 当前表面积+下一层表面积如果超过最优值就退出 当前体积+下一层体积如果超过总体积就退出 假设剩余所有的体积都用来做下一层那么此时下一层的体积是最大 而半径会最大 从而表面积最小(定理:当体积一定时 半径越大 表面积越小) 每次枚举半径和高时 是从下一层的半径和高到还剩下的层数 因为每层都要比下面大1 代码 #include<iostream> #include<cmat…
洛谷P1313:https://www.luogu.org/problemnew/show/P1313 思路 本题就是考查二次项展开 根据定理有:(ax+by)k=∑ki=0Cik*aibk-ixiyk-i 即推出xnym的系数是Cmk*anbm 代码 #include<iostream> using namespace std; #define mod 10007 ,B=; ][]; int main() { cin>>a>>b>>k>>n&g…
洛谷P1463:https://www.luogu.org/problemnew/show/P1463 思路 约数个数公式  ai为质因数分解的质数的指数 定理: 设m=2a1*3a2*...*pak(其中p为第k大的质数)是Antiprime数 则必有a1≥a2≥a3≥...≥ak≥0 因此如果有两个值约数个数相同 则要取值比较小的那个 剪枝: 有了这个定理我们就可以搜索质数的指数 由于231已经远远超过数据规模 因此我们只需要搜到31层 质因子的个数最多只有10个(所有质因子相乘得到他们可以…
洛谷题目链接:魔板 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有一种颜色.这8种颜色用前8个正整数来表示.可以用颜色的序列来表示一种魔板状态,规定从魔板的左上角开始,沿顺时针方向依次取出整数,构成一个颜色序列.对于上图的魔板状态,我们用序列(1,2,3,4,5,6,7,8)来表示.这是基本状态. 这里提供三种基本操作,分别用大写字母"A","…