ab矩阵(实对称矩阵)】的更多相关文章

今天在做题时巧遇了很多此类型的矩阵,出于更快解,对此进行学习.(感谢up主线帒杨) 1.认识ab矩阵 形如:主对角线元素都是a,其余元素都是b,我们称之为ab矩阵(默认涉及即为n×n阶) 2.求|A| 证明: 3.求高次幂 将矩阵A拆分成A=λE+B,矩阵B的高次幂 \(B^n\) 运用以下"二项式"公式易得: 一题: 4.秩 一题:[r(A)<n,|A|=0] 5.齐次方程组 一题: 6.特征值与特征向量 结合前面所学的求|A|更快计算|λE-A|,建议收藏本题并注意5:20处…
设 $A,B$ 是 $n$ 阶实对称矩阵. 试证: $\tr((AB)^2)\leq \tr(A^2B^2)$. 又问: 等号何时成立? 证明:  由  $$\bex  \sum_i \sez{\sum_j a_{ij}b_{ji}}=\sum_j\sez{\sum_i b_{ji}a_{ij}}  \eex$$  知  $$\bee\label{130912:1}  \tr(AB)=\tr(BA).  \eee$$  对 $A,B\in M_n(\bbR)$, 定义  $$\bex  \sef…
I. 行列式(Determinants)和迹(Trace) 1. 行列式(Determinants) 为避免和绝对值符号混淆,本文一般使用\(det(A)\)来表示矩阵\(A\)的行列式.另外这里的\(A∈R^{n×n}\)默认是方阵,因为只有方阵才能计算行列式. 行列式如何计算的就不在这里赘述了,下面简要给出行列式的各种性质和定理. 定理1:当且仅当一个方阵的行列式不为0,则该方阵可逆. 定理2:方阵\(A\)的行列式可沿着某一行或某一列的元素展开,形式如下: 沿着第\(i\)行展开:\[de…
将学习到什么 矩阵 \(A\) 与 \(\dfrac{1}{2}(A+A^T)\) 两者生成相同的二次型,而后面那个矩阵是对称的,这样以来,为了研究实的或者复的二次型,就只需要研究由对称矩阵生成的二次型.   基本概念   定义1: 矩阵 \(A=[a_{ij}] \in M_n\) 称为 Hermite 的,如果 \(A=A^*\):它是斜 Hermite 的,如果 \(A=-A^*\). 对于 \(A,B \in M_n\),可得出很多简单明了的结论:   (1) \(A+A^*\), \(…
[前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征值和特征向量(Characteristic Vectors)求解算法——雅克比算法(Jacobi).Jacobi算法的原理和实现可以参考[https://blog.csdn.net/zhouxuguang236/article/details/40212143].通过Jacobi算法可以以任意精度近…
矩阵的特征值和特征向量是线性代数以及矩阵论中很重要的一个概念.在遥感领域也是经经常使用到.比方多光谱以及高光谱图像的主成分分析要求解波段间协方差矩阵或者相关系数矩阵的特征值和特征向量. 依据普通线性代数中的概念,特征值和特征向量能够用传统的方法求得,可是实际项目中一般都是用数值分析的方法来计算,这里介绍一下雅可比迭代法求解特征值和特征向量. 雅克比方法用于求实对称阵的所有特征值.特征向量. 对于实对称阵 A,必有正交阵 U.使 U TA U = D. 当中 D 是对角阵,其主对角线元 li 是…
Hessian矩阵与多元函数极值 海塞矩阵(Hessian Matrix),又译作海森矩阵,是一个多元函数的二阶偏导数构成的方阵.虽然它是一个具有悠久历史的数学成果.可是在机器学习和图像处理(比如SIFT和SURF特征检測)中,我们也经常遇到它.所以本文就来向读者道一道Hessian Matrix的来龙去脉.本文的主要内容包括: 多元函数极值问题 泰勒展开式与Hessian矩阵 多元函数极值问题 回忆一下我们是怎样处理一元函数求极值问题的. 比如.f(x)=x2,我们会先求一阶导数,即f′(x)…
原文链接 矩阵的基础内容以前已经提到,今天我们来看看矩阵的重要特性——特征向量. 矩阵是个非常抽象的数学概念,很多人到了这里往往望而生畏.比如矩阵的乘法为什么有这样奇怪的定义?实际上是由工程实际需要定义过来的.如果只知道概念不懂有何用处,思维就只有抽象性而没有直观性,实在是无法感受矩阵的精妙. 直观性说明 我们先看点直观性的内容.矩阵的特征方程式是: A * x = lamda * x 这个方程可以看出什么?上次我们提到矩阵实际可以看作一个变换,方程左边就是把向量x变到另一个位置而已:右边就是把…
http://mathworld.wolfram.com/Moore-PenroseMatrixInverse.html 显然,埃尔米特矩阵主对角线上的元素都是实数的,其特征值也是实数.对于只包含实数元素的矩阵(实矩阵),如果它是对称阵,即所有元素关于主对角线对称,那么它也是埃尔米特矩阵.也就是说,实对称矩阵是埃尔米特矩阵的特例. https://en.wikipedia.org/wiki/Hermitian_matrix In mathematics, a Hermitian matrix (…
// // Created by qian on 19-7-16. // /* 相机位姿用四元数表示 q = [0.35, 0.2, 0.3, 0.1] x,y,z,w * 注意:输入时Quaterniond(w,x,y,z) W 在前!!! * 实现:输出四元素对应的旋转矩阵,旋转矩阵的转置, * 旋转矩阵的逆矩阵,旋转矩阵乘以自身的转置,验证旋转矩阵的正交性 * Vector3.normalized的特点是当前向量是不改变的并且返回一个新的规范化的向量: * Vector3.Normaliz…
一.基础数据类型 1.(基础)固定大小矩阵类 matx 说明: ①    基础矩阵是我个人增加的描述,相对于Mat矩阵类(存储图像信息的大矩阵)而言. ②    固定大小矩阵类必须在编译期间就知晓其维度(矩阵大小)和类型(矩阵元素类型),用于某些特定的矩阵运算.数据存储也在栈上. ③    机器视觉领域,通常这些矩阵一般是2x2或3x3维度,较少有4x4维矩阵用于大量的转换工作.故Matx.hpp头文件被专门设计来容纳这类操作. ④    实际运用中单纯的运算matx矩阵操作是不执行的,通常都是…
证明:实对称阵属于不同特征值的的特征向量是正交的. 设Ap=mp,Aq=nq,其中A是实对称矩阵,m,n为其不同的特征值,p,q分别为其对应得特征向量. 则 p1(Aq)=p1(nq)=np1q (p1A)q=(p1A1)q=(AP)1q=(mp)1q=mp1q 因为 p1(Aq)= (p1A)q 上两式作差得: (m-n)p1q=0 由于m不等于n, 所以p1q=0 即(p,q)=0,从而p,q正交.说明:p1表示p的转置,A1表示A的转置,(Ap)1表示Ap的转置…
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=2859 Phalanx Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2792    Accepted Submission(s): 1357 Problem Description Today is army day, but the s…
一.动态规划的基本思想 动态规划算法通常用于求解具有某种最优性质的问题.在这类问题中,可能会有许多可行解.每一个解都对应于一个值,我们希望找到具有最优值的解. 将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解.适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的.若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次.如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间.为了…
对称矩阵 对于一个矩阵结构显然用一个二维数组来表示是非常恰当的,但在有些情况下,比如常见的一些特殊矩阵,如三角矩阵.对称矩阵.带状矩阵.稀疏矩阵等,从节约存储空间的角度考虑,这种存储是不太合适的.下面从这一角度来考虑这些特殊矩阵的存储方法. 对称矩阵的特点是:在一个n 阶方阵中,有aij=aji ,其中1≤i , j≤n,如图5.5 所示是一个5阶对称矩阵.对称矩阵关于主对角线对称,因此只需存储上三角或下三角部分即可,比如,我们只存储下三角中的元素aij,其特点是j≤i 且1≤i≤n,对于上三角…
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:2637 解决:1354 题目描述: 输入一个N维矩阵,判断是否对称. 输入: 输入第一行包括一个数:N(1<=N<=100),表示矩阵的维数. 接下来的N行,每行包括N个数,表示N*N矩阵的元素. 输出: 可能有多组测试数据,对于每组数据, 输出"Yes!"表示矩阵为对称矩阵. 输出"No!"表示矩阵不是对称矩阵. 样例输入: 4 16 19 16 6 19 16 14 5 16 14 16 3…
题目1180:对称矩阵 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:3092 解决:1607 题目描述: 输入一个N维矩阵,判断是否对称. 输入: 输入第一行包括一个数:N(1<=N<=100),表示矩阵的维数.接下来的N行,每行包括N个数,表示N*N矩阵的元素. 输出: 可能有多组测试数据,对于每组数据,输出"Yes!”表示矩阵为对称矩阵.输出"No!”表示矩阵不是对称矩阵. 样例输入: 4 16 19 16 6 19 16 14 5 16 14 16 3…
title: [线性代数]6-4:对称矩阵(Symmetric Matrices) categories: Mathematic Linear Algebra keywords: Eigenvalues Eigenvectors Symmetric Matrices Projection Matrices Spectral Theorem Principal Axis Theorem toc: true date: 2017-11-22 15:18:03 Abstract: 本篇继续线性代数的高…
[九度OJ]题目1180:对称矩阵 解题报告 标签(空格分隔): 九度OJ http://ac.jobdu.com/problem.php?pid=1180 题目描述: 输入一个N维矩阵,判断是否对称. 输入: 输入第一行包括一个数:N(1<=N<=100),表示矩阵的维数. 接下来的N行,每行包括N个数,表示N*N矩阵的元素. 输出: 可能有多组测试数据,对于每组数据, 输出"Yes!"表示矩阵为对称矩阵. 输出"No!"表示矩阵不是对称矩阵. 样例输…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
转自 http://blog.csdn.net/han_xiaoyang/article/details/51629242 斯坦福大学CS224d基础1:线性代数知识 作者:Zico Kolter (补充: Chuong Do) 时间:2016年6月 翻译:@MOLLY(mollyecla@gmail.com) @OWEN(owenj1989@126.com) 校正:@寒小阳(hanxiaoyang.ml@gmail.com) @龙心尘(johnnygong.ml@gmail.com)  出处:…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维 数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助 读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读…
主成分分析(PCA)是一种经典的降维算法,基于基变换,数据原来位于标准坐标基下,将其投影到前k个最大特征值对应的特征向量所组成的基上,使得数据在新基各个维度有最大的方差,且在新基的各个维度上数据是不相关的,PCA有几个关键的点: 1)归一化均值与方差,均值归一化后便于计算,方差归一化后便于对各个维度进行比较 2)新基为正交基,即各个坐标轴是相互独立的(可理解为垂直),只需要取新基上取方差最大的前几个维度即可 3)PCA的前提是只对服从高斯分布的数据特征提取效果较好,这就大大限制了它的应用范围.如…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
一:引入问题 首先看一个表格,下表是某些学生的语文,数学,物理,化学成绩统计: 首先,假设这些科目成绩不相关,也就是说某一科目考多少分与其他科目没有关系,那么如何判断三个学生的优秀程度呢?首先我们一眼就能看出来,数学,物理,化学这三门课的成绩构成了这组数据的主成分(很显然,数学作为第一主成分,因为数据成绩拉的最开). 那么为什么我们能一眼看出来呢? 当然是我们的坐标轴选对了!! 下面,我们继续看一个表格,下标是一组学生的数学,物理,化学,语文,历史,英语成绩统计: 那么这个表我们能一眼看出来吗?…
主成分分析(PCA)是一种经典的降维算法,基于基变换,数据原来位于标准坐标基下,将其投影到前k个最大特征值对应的特征向量所组成的基上,使得数据在新基各个维度有最大的方差,且在新基的各个维度上数据是不相关的,PCA有几个关键的点: 1)归一化均值与方差,均值归一化后便于计算,方差归一化后便于对各个维度进行比较 2)新基为正交基,即各个坐标轴是相互独立的(可理解为垂直),只需要取新基上取方差最大的前几个维度即可 3)PCA的前提是只对服从高斯分布的数据特征提取效果较好,这就大大限制了它的应用范围.如…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
引言 当面对的数据被抽象为一组向量,那么有必要研究一些向量的数学性质.而这些数学性质将成为PCA的理论基础. 理论描述 向量运算即:内积.首先,定义两个维数相同的向量的内积为: (a1,a2,⋯,an)T⋅(b1,b2,⋯,bn)T=a1b1+a2b2+⋯+anbn 内积运算将两个向量映射为一个实数.其计算方式非常容易理解,但是其意义并不明显.所以,我们分析内积的几何意义.假设A和B是两个n维向量,我们知道n维向量可以等价表示为n维空间中的一条从原点发射的有向线段,为了简单起见我们假设A和B均为…