题面传送门 一道挺综合的 hot tea,放到 PKUWC 的 D2T2 还挺喜闻乐见的( 首先我们考虑怎样对一个固定的集合 \(S\) 计算答案,注意到我们要求的是一个形如 \(E(\max(S))\) 的式子,套用 Min-Max 反演可将其转化为 \(\sum\limits_{T\subseteq S}(-1)^{|T|-1}E(\min(T))\),我们记 \(g_T=(-1)^{|T|-1}E(\min(T))\),那么 \(ans_S=\sum\limits_{T\subseteq…
[LOJ#2542][PKUWC2018]随机游走(min-max容斥,动态规划) 题面 LOJ 题解 很明显,要求的东西可以很容易的进行\(min-max\)容斥,那么转为求集合的\(min\). 那么怎么求解每个集合的\(min\)呢. 显然以起点为根节点,如果点集中一个点在另外一个点的子树内,显然不需要考虑,索性丢掉.考虑剩下的点,把他们的子树丢掉(要访问子树肯定要访问到某个点),那么剩下的点直接扣下来做一个高斯消元就可以求出到达每个点的期望,那么\(min\)就求出来. 设\(f[S]\…
「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特殊形式的. \[E(\text{max}(S))=\sum_{T\subseteq S}(-1)^{|T|+1}E(\text{min}(T))\] 问题转化之后,然后我们可以枚举所有状态然后 \(O(n)\) 树形 \(dp\) \(-1\) 那项可以 \(O(2^n)\) 推出来,接下来就是子集…
传送门 那么除了D1T3,PKUWC2018就更完了(斗地主这种全场0分的题怎么会做啊) 发现我们要求的是所有点中到达时间的最大值的期望,\(n\)又很小,考虑min-max容斥 那么我们要求从\(x\)走到第一个属于某个子集\(S\)的节点的步数期望,这是一个经典的树上高斯消元问题. 将树设为以\(x\)为根,设\(f_{i , S}\)为从第\(i\)个点随机游走到达点集\(S\)任意一个点停止,行走步数的期望,转移: \(1.i \in S: f_{i , S}=0\) \(2.i \no…
点此看题面 大致题意: 从一个给定点出发,在一棵树上随机游走,对于相邻的每个点均有\(\frac 1{deg}\)的概率前往.多组询问,每次给出一个点集,求期望经过多少步能够访问过点集内所有点至少一次. \(Min-Max\)容斥 访问过每个点至少一次,显然不是什么好处理的东西. 我们考虑一个叫\(Min-Max\)容斥的东西. 关于\(Min-Max\)容斥,有这样一个公式: \[E(max(S))=\sum_{T∈S}(-1)^{|T|+1}E(min(T))\] 套到这题,\(E(max(…
题目:https://loj.ac/problem/2542 可以最值反演.注意 min 不是独立地算从根走到每个点的最小值,在点集里取 min ,而是整体来看,“从根开始走到点集中的任意一个点就停下”的期望步数. 设 f[ i ] 表示从根走到 i ,再走期望几步就能走到点集中的某个点.有 \( f[i]=\frac{1}{d[i]}\sum\limits_{j}(f[j]+1) \) ( j 是和 i 有边的点) 于是要“树上高斯消元”.其实就是尝试写成 \( f[i]=a[i]*f[st]…
题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. 考虑 dp 的话,令 \(dp[x]\) 表示从 \(x\) 开始走的答案. 如果 \(x \in S\),那么 \(dp[x] = 0\): 否则,\(dp[x] = 1 + \frac{\sum\limits_{(x, y) \in T} dp[y]}{deg_x}\). 这个东西直接树上高斯…
Description 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一直随机游走,直到点集 \(S\) 中所有点都至少经过一次的话,期望游走几步. 特别地,点 \(x\)(即起点)视为一开始就被经过了一次. 答案对 $998244353 $ 取模. Solution 考虑 min-max 容斥,问题变成求从 \(x\) 点出发第一次到集合 \(S\)…
题目描述 给定一棵 n 个结点的树,你从点 x 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 Q 次询问,每次询问给定一个集合 S,求如果从 x 出发一直随机游走,直到点集 S 中所有点都至少经过一次的话,期望游走几步. 特别地,点 x(即起点)视为一开始就被经过了一次. 答案对 998244353 取模. 输入格式 第一行三个正整数 n,Q,x. 接下来 n-1 行,每行两个正整数 (u,v) 描述一条树边. 接下来 Q 行,每行第一个数 k 表示集合大小,接下来 k 个互不相同的…
点此看题面 大致题意: 一个无向连通图,小\(Z\)从\(1\)号顶点出发,每次随机选择某条边走到下一个顶点,并将\(ans\)加上这条边的编号,走到\(N\)号顶点时结束.请你对边进行编号,使总分期望值最小. 一个贪心的思想 由于贪心的思想,我们肯定是给期望访问次数最大的边编号为\(1\),第二大的编号为\(2\),第三大的编号为\(3\),以此类推. 那么我们应该怎么求出边的期望呢? 由于边的期望可以由点的期望转化得来,因此只要求出了点的期望,就能求出边的期望. 那么怎么求出点的期望呢? 这…