Convolutional Neural Networks: Step by Step implement convolutional (CONV) and pooling (POOL) layers in numpy, including both forward propagation and (optionally) backward propagation. Notation: Superscript \([l]\) denotes an object of the \(l^{th}\)…
代码:https://github.com/Yochengliu/Relation-Shape-CNN 文章:https://arxiv.org/abs/1904.07601 作者直播:https://www.bilibili.com/video/av61824733 作者维护了一个收集一系列点云论文.代码.数据集的github仓库:https://github.com/Yochengliu/awesome-point-cloud-analysis 这篇paper是CVPR 2019 Oral…
最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28nm for Intelligent Embedded Systems 单位:STMicroelectronics(意法半导体) 这是一篇很综合芯片SOC设计,总体架构如下: 本文采用的DSP簇作为加速阵列,包含8个DSP簇,每簇内含2个3…
最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28nm for Intelligent Embedded Systems 单位:STMicroelectronics(意法半导体) 这是一篇很综合芯片SOC设计,总体架构如下: 本文采用的DSP簇作为加速阵列,包含8个DSP簇,每簇内含2个3…
Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 问题讨论 总结与收获点 作者补充信息 参考文献 作者和相关链接 论文下载 作者: tong he, 黄伟林,乔宇,姚剑 方法概括 使用改进版的MSER(CE-MSERs,contrast-enhancement)提取候选字符区域: 使用新的CN…
全连接神经网络(Fully connected neural network)处理图像最大的问题在于全连接层的参数太多.参数增多除了导致计算速度减慢,还很容易导致过拟合问题.所以需要一个更合理的神经网络结构来有效地减少神经网络中参数的数目.而卷积神经网络(Convolutional Neural Network,CNN)可以做到. 1. 卷积神经网络构成 图 1:卷积神经网络 输入层 整个网络的输入,一般代表了一张图片的像素矩阵.图 1中最左侧三维矩阵代表一张输入的图片,三维矩阵的长.宽代表了图…
翻译自Build a Convolutional Neural Network using Estimators TensorFlow的layer模块提供了一个轻松构建神经网络的高端API,它提供了创建稠密(全连接)层和卷积层,添加激活函数,应用dropout regularization的方法.本教程将介绍如何使用layer来构建卷积神经网络来识别MNIST数据集中的手写数字. MNIST数据集由60,000训练样例和10,000测试样例组成,全部都是0-9的手写数字,每个样例由28x28大小…
目录 1 神经网络 2 卷积神经网络 2.1 局部感知 2.2 参数共享 2.3 多卷积核 2.4 Down-pooling 2.5 多层卷积 3 ImageNet-2010网络结构 4 DeepID网络结构 5 参考资源 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益.正文之前,先…
HYPERSPECTRAL IMAGE CLASSIFICATION USING TWOCHANNEL  DEEP  CONVOLUTIONAL NEURAL NETWORK 论文地址:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7730324 1.文章简介: 该论文是用双通道卷积神经网络CNN分别提取空谱信息,然后将得到的抽象特征级联为全连接层的输入,以此作为空谱联合信息输入两层全连接层以及softmax层.此外,文中针对小…
A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK 文章地址:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8127792 写在前面:各位朋友好,这是本人第一篇博客,为了不打击自己,决定从一篇易懂的paper的阅读笔记开始写起,写的不好不对的地方望各位朋友不吝赐教,在此先行谢过. 1.文章简介: 这是一篇运用卷积神经网…
ShuffleNet: An Extremely Efficient Convolutional Neural Network for MobileDevices…
代码: keras:https://github.com/phdowling/abcnn-keras tf:https://github.com/galsang/ABCNN 本文是Wenpeng Yin 该作者之前还发过一篇<Convolutional Neural Network Architectures for Matching Natural Language Sentences> .ABCNN是基于之前发的这篇论文加入了注意力机制. 相比这两篇Attention-based的论文,会…
Kalchbrenner’s Paper Kal的这篇文章引用次数较高,他提出了一种名为DCNN(Dynamic Convolutional Neural Network)的网络模型,在上一篇(Kim’s Paper)中的实验结果部分也验证了这种模型的有效性.这个模型的精妙之处在于Pooling的方式,使用了一种称为动态Pooling的方法. 下图是这个模型对句子语义建模的过程,可以看到底层通过组合邻近的词语信息,逐步向上传递,上层则又组合新的Phrase信息,从而使得句子中即使相离较远的词语也…
1. 文章内容概述 本人精读了事件抽取领域的经典论文<Event Extraction via Dynamic Multi-Pooling Convolutional Neural Network>,并作出我的读书报告.这篇论文由中科院自动化所赵军.刘康等人发表于ACL2015会议,提出了用CNN模型解决事件抽取任务. 在深度学习没有盛行之前,解决事件抽取任务的传统方法,依赖于较为精细的特征设计已经一系列复杂的NLP工具,并且泛化能力较低.针对此类问题,这篇论文提出了一个新颖的事件抽取方法,能…
需求说明:深度学习FPGA实现知识储备 来自:http://blog.csdn.net/stdcoutzyx/article/details/41596663 说明:图文并茂,言简意赅. 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益.正文之前,先说几点自己对于CNN的感触.先明确一…
Coding according to TensorFlow 官方文档中文版 中文注释源于:tf.truncated_normal与tf.random_normal TF-卷积函数 tf.nn.conv2d 介绍 TensorFlow - tf.nn.conv2d tf.nn.max_pool参数含义和用法 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = inpu…
今年去参加了ASPLOS 2017大会,这个会议总体来说我感觉偏系统和偏软一点,涉及硬件的相对少一些,对我这个喜欢算法以及硬件架构的菜鸟来说并不算非常契合.中间记录了几篇相对比较有趣的paper,今天简单写一篇. SC-DCNN: Highly-Scalable Deep Convolutional Neural Network using Stochastic Computing 单位作者: 我们知道在神经网络计算中,最主要的计算就是乘加,本篇重点就是解释了什么是Stochastic Comp…
Convolutional Neural Network Overview A Convolutional Neural Network (CNN) is comprised of one or more convolutional layers (often with a subsampling step) and then followed by one or more fully connected layers as in a standard multilayer neural net…
今天给大家带来一篇来自CVPR 2017关于人脸识别的文章. 文章题目:Deep Convolutional Neural Network using Triplets of Faces, Deep Ensemble, and 摘要: 文章动机:人脸识别在一个没有约束的环境下,在计算机视觉中是一个非常有挑战性的问题.同一个身份的人脸当呈现不同的装饰,不同的姿势和不同的表情都可以使人脸看起来完全不同.这种相同身份的变化可以压倒不同身份的变化,这样给人脸识别带来更大的挑战,特别是在没有约束的环境下.…
[论文标题]Automatic recommendation technology for learning resources with convolutional neural network (2016 ISET) [论文作者]Xiaoxuan Shen, Baolin Yi*, Zhaoli Zhang,Jiangbo Shu, and Hai Liu [论文链接]Paper(5-pages // Double column) <札记非FY> [摘要] 自动学习资源推荐已经成为一个越来…
树卷积神经网络Tree-CNN: A Deep Convolutional Neural Network for Lifelong Learning 2018-04-17 08:32:39 看_这是一群菜鸟 阅读数 1906  收藏 更多 分类专栏: 论文解读   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_24305433/article/details/79856672 一.…
作者:wuliytTaotao 出处:https://www.cnblogs.com/wuliytTaotao/ 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接.         原文地址: https://www.cnblogs.com/wuliytTaotao/p/9488045.html     -------------------------------------------…
import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms # 配置GPU或CPU设置 device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # 超参数设置 num_epochs = 5 num_classes = 10 batch_size = 100 learning_…
ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 d…
tensorflow MNIST Convolutional Neural Network MNIST CNN 包含的几个部分: Weight Initialization Convolution and Pooling Convolution layer Fully connected layer Readout Layer 直接上tensorflow 给的示例: 先读入数据: from tensorflow.examples.tutorials.mnist import input_data…
CNN(Convolutional Neural Network) 卷积神经网络(简称CNN)最早可以追溯到20世纪60年代,Hubel等人通过对猫视觉皮层细胞的研究表明,大脑对外界获取的信息由多层的感受野(Receptive Field)激发完成的.在感受野的基础上,1980年Fukushima提出了一个理论模型Neocognitron是感受野在人工神经网络领域的首次应用.1998年,Lecun等人提出的LeNet-5模型在手写字符识别上取得了成功,引起了学术界对卷积神经网络的关注.2012年…
目录 摘要 一.引言 二.相关工作 基于视图和体素的方法 点云上的深度学习 相关性学习 三.形状意识表示学习 3.1关系-形状卷积 建模 经典CNN的局限性 变换:从关系中学习 通道提升映射 3.2性质 置换不变性 对刚性变换鲁棒 点相互作用 权重共享 3.3再讨论2D网格卷积 3.4用于点云分析的RS-CNN 3.5应用细节 四.实验 4.1点云分析 形状分类 形状部件分割 法向量估计 4.2 RS-CNN设计分析 消融研究 聚合函数A 映射函数M 低级关系h 点置换和刚性变换的鲁棒性 4.3…
论文地址:FLGCNN:一种新颖的全卷积神经网络,用于基于话语的目标函数的端到端单耳语音增强 论文代码:https://github.com/LXP-Never/FLGCCRN(非官方复现) 引用格式:Zhu Y, Xu X, Ye Z. FLGCNN: A novel fully convolutional neural network for end-to-end monaural speech enhancement with utterance-based objective funct…
论文地址:TCNN:时域卷积神经网络用于实时语音增强 论文代码:https://github.com/LXP-Never/TCNN(非官方复现) 引用格式:Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE International Conference on Ac…
CNN 主要解决 computer vision 问题,同时解决input X 维度太大的问题. Edge detection 下面演示了convolution 的概念 下图的 vertical edge 看起来有点厚,但是如果图片远比6x6像素大的话,就会看到效果非常不错. 除了前面讲过的第一种filter, 还有两种 (Sobel filter, Scharr filter) 接下来会讲到 CNN 的两个重要的buiding block - padding, strided convolut…