sklearn之转换器和估计器】的更多相关文章

sklearn之转换器和估计器 转换器 估计器(sklearn机器学习算法的实现) 转换器 想一下之前做的特征工程的步骤? 实例化(实例化的是一个转换器类(Transformer)--特征工程的父类) 调用 fit_transform (对于文档建立分类词频矩阵,不能同时调用) 我们把特征工程的接口称之为转换器,其中转换器调用有这么几种形式(以标准化为例进行说明) fit_transform fit -- 计算 每一列的平均值.标准差 transform -- 公式的带入进行最终转换 估计器(s…
数据集划分 机器学习一般的数据集会划分为两个部分: 训练数据:用于训练,构建模型 测试数据:在模型检验时使用,用于评估模型是否有效 训练数据和测试数据常用的比例一般为:70%: 30%, 80%: 20%, 75%: 25% sklearn数据集划分API: sklearn.model_selection.train_test_split 常用参数: 特征值和目标值 test_size:测试数据的大小,默认为0.25 返回值:训练数据特征值,测试数据特征值,训练数据目标值,测试数据目标值的元组…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/41 本文地址:http://www.showmeai.tech/article-detail/203 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 引言 我们在上一篇SKLearn入门与简单应用案例里给大家讲到了SKLearn工具的基本板块与使用方法,在本篇内容中,我们展开讲解SKLearn的进阶与核心内容.SKLearn中有六大任务模块,如下…
分类属于监督学习算法,是指根据已有的数据和标签(分类)进行学习,预测未知数据的标签.分类问题的目标是预测数据的类别标签(class label),可以把分类问题划分为二分类和多分类问题.二分类是指在两个类别中选择一个类别,在二分类问题中,其中一个类别称作正类(positive class),另一个类别称作反类(negative class),比如判断垃圾邮件.多分类问题是指从多个分类中选择一个类别. 一,分类的一般方法 数据分类是一个两阶段的过程,包括学习阶段(构建分类模型)和分类阶段(使用模型…
卷 TOSHIBA EXT 的文件夹 PATH 列表卷序列号为 AE86-8E8DF:.│ python就业班-淘宝-目录.txt│ ├─01 网络编程│ ├─01-基本概念│ │ 01-网络通信概述.flv│ │ 02-IP地址.flv│ │ 03-Linux.windows查看网卡信息.flv│ │ 04-ip地址的分类-ipv4和ipv6介绍.flv│ │ 05-(重点)端口.mp4│ │ 06-端口分类:知名端口.动态端口.flv│ │ 07-socket介绍.mp4│ │ │ ├─02…
Spark MLib 在Spark下进行机器学习,必然无法离开其提供的MLlib框架,所以接下来我们将以本框架为基础进行实际的讲解.首先我们需要了解其中最基本的结构类型,即转换器.估计器.评估器和流水线. graph LR A[转换器] --> B(估计器) B --> C(评估器) C --> D[模型] 首先欢迎大家Start本人关于机器学习的学习仓库,不仅仅包含了Spark ML还包括python下的sklearn等主流库. 一.基础使用 接下来我们将以一个简单的例子为基础整体介绍…
一.pipeline 一个典型的机器学习过程从数据收集开始,要经历多个步骤,才能得到需要的输出.这非常类似于流水线式工作,即通常会包含源数据ETL(抽取.转化.加载),数据预处理,指标提取,模型训练与交叉验证,新数据预测等步骤. 在介绍工作流之前,我们先来了解几个重要概念: DataFrame:使用Spark SQL中的DataFrame作为数据集,它可以容纳各种数据类型. 较之 RDD,包含了 schema 信息,更类似传统数据库中的二维表格.它被 ML Pipeline 用来存储源数据.例如…
AutoML 即通过自动化的机器学习实现人工智能模型的快速构建,它可以简化机器学习流程,方便更多人利用人工智能技术.近日,软件行业巨头 Salesforce 开源了其 AutoML 库 TransmogrifAI.Salesforce Einstein 数据科学高级总监 Shubha Nabar 在 Medium 上撰文介绍了该 AutoML 库,包括工作流程和设计原则等. GitHub 链接:https://github.com/salesforce/TransmogrifAI Transmo…
""" Pipeline Example. """ # $example on$ from pyspark.ml import Pipeline from pyspark.ml.classification import LogisticRegression from pyspark.ml.feature import HashingTF, Tokenizer # $example off$ from pyspark.sql import Spa…
Alink漫谈(二) : 从源码看机器学习平台Alink设计和架构 目录 Alink漫谈(二) : 从源码看机器学习平台Alink设计和架构 0x00 摘要 0x01 Alink设计原则 0x02 Alink实例代码 算法调用 算法主函数 算法模块举例 0x03 顶层 -- 流水线 1. 机器学习重要概念 2. Alink中概念实现 3. 结合实例看流水线 0x04 中间层 -- 算法组件 1. Algorithm operators 2. Mapper(提前说明) 3. 系统内置算法组件 Mo…