开始导入 MinMaxScaler 时会报错 “from . import _arpack ImportError: DLL load failed: 找不到指定的程序.” (把sklearn更新下)和“AttributeError: module 'numpy' has no attribute 'testing'”,然后把numpy卸载重装(pip uninstall numpy; pip install numpy),问题解决. #import datetime import pandas…
时间序列是按时间顺序的一组真实的数字,比如股票的交易数据.通过分析时间序列,能挖掘出这组序列背后包含的规律,从而有效地预测未来的数据.在这部分里,将讲述基于时间序列的常用统计方法. 1 用rolling方法计算移动平均值 当时间序列的样本数波动较大时,从中不大容易分析出未来的发展趋势的时候,可以使用移动平均法来消除随机波动的影响.可以说,移动平均法是针对时间序列的常用分析方法,其基本思想是,根据时间序列样本数据.逐步向后推移,依次计算指定窗口序列的平均值. 股票的移动平均线是个比较常见的范例,通…
时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的. 举个栗子:根据过去两年某股票的每天的股价数据推测之后一周的股价变化:根据过去2年某店铺每周想消费人数预测下周来店消费的人数等等 RNN 和 LSTM 模型 时间序列模型最常用最强大的的工具就是递归神经网络(recurrent neural n…
目录 基于 Keras 用 LSTM 网络做时间序列预测 问题描述 长短记忆网络 LSTM 网络回归 LSTM 网络回归结合窗口法 基于时间步的 LSTM 网络回归 在批量训练之间保持 LSTM 的记忆 在批量训练中堆叠 LSTM 网络 总结 扩展阅读 本文主要参考了 Jason Brownlee 的博文 Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras 原文使用 python 实现模型…
深度学习|基于LSTM网络的黄金期货价格预测 前些天看到一位大佬的深度学习的推文,内容很适用于实战,争得原作者转载同意后,转发给大家.之后会介绍LSTM的理论知识. 我把code先放在我github上,大家有需要的自行下载,等原作者上传相关code时,我再告诉大家.欢迎大家关注大佬的公众号. https://github.com/RankXiaoLong/PythonVisualization import pandas as pd import datetime import matplotl…
我的新书,<基于股票大数据分析的Python入门实战>,预计将于2019年底在清华出版社出版. 如果大家对大数据分析有兴趣,又想学习Python,这本书是一本不错的选择.从知识体系上来看,这本书的内容涵盖了开发Python企业级项目所需的知识点,包括但不限于Python基础语法知识.基于Pandas的大数据分析技术.基于Matplotlib的可视化编程技术.Python爬虫技术和基于Django的网络编程技术,甚至还在本书的最后,讲述了机器学习编程技术. 这本书的大多数范例程序是基于股票分析的…
实验二.语法设计--基于LL(1)文法的预测分析表法 一.实验目的 通过实验教学,加深学生对所学的关于编译的理论知识的理解,增强学生对所学知识的综合应用能力,并通过实践达到对所学的知识进行验证.通过对基于LL(1)文法的预测分析表法DFA模拟程序实验,使学生掌握确定的自上而下的语法分析的实现技术,及具体实现方法.通过本实验加深对语词法分析程序的功能及实现方法的理解 . 二.实验环境 供Windows系统的PC机,可用C++/C#/Java等编程工具编写 三.实验内容 1.自己定义一个LL(1)文…
本篇文章介绍使用TensorFlow的递归神经网络(LSTM)进行序列预测.作者在网上找到的使用LSTM模型的案例都是解决自然语言处理的问题,而没有一个是来预测连续值的. 所以呢,这里是基于历史观察数据进行实数序列的预测.传统的神经网络模型并不能解决这种问题,进而开发出递归神经网络模型,递归神经网络模型可以存储历史数据来预测未来的事情. 在这个例子里将预测几个函数: 正弦函数:sin 同时存在正弦函数和余弦函数:sin和cos x*sin(x) 首先,建立LSTM模型,lstm_model,这个…
https://blog.csdn.net/flying_sfeng/article/details/78852816 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/Flying_sfeng/article/details/78852816 这篇文章将讲解如何使用lstm进行时间序列方面的预测,重点讲lstm的应用,原理部分可参考以下两篇文章: Understanding LSTM Networks       LSTM学习笔记 编程环境:py…
目录 基于 Keras 用深度学习预测时间序列 问题描述 多层感知机回归 多层感知机回归结合"窗口法" 改进方向 扩展阅读 本文主要参考了 Jason Brownlee 的博文 Time Series Prediction With Deep Learning in Keras 原文使用 python 实现模型,这里是用 R 基于 Keras 用深度学习预测时间序列 时间序列预测一直以来是机器学习中的一个难题. 在本篇文章中,将介绍如何在 R 中使用 keras 深度学习包构建神经网络…