MapReduce 运行全过程解析】的更多相关文章

关注公众号,大家可以在公众号后台回复“博客园”,免费获得作者 Java 知识体系/面试必看资料. 前言 前面我们讲了 MapReduce 的编程模型,我们知道他主要分成两大阶段来完成一项任务,一是 map 阶段对我们的数据进行分开计算,第二是 reduce 阶段,对 map 阶段计算产生的结果再进行汇总. 还写了一个非常经典的,类似于Java 中 HelloWorld 一样的 WordCount 代码.今天我们就根据这个代码来阐述整个 MapReduce 的运行过程. 先苦口婆心的告诉你,这个知…
0. 说明 Word Count 程序运行流程解析 &&  MapReduce 程序运行流程解析 1. Word Count 程序运行流程解析 2. MapReduce 程序运行流程图…
Linux入门:运行级别解析   一.查看当前运行级别 Ubuntu中,runlevel命令 可以查看当前运行级别: CentOS中,who -r 命令查看当前运行级别:   www.2cto.com   二.设置开机运行级别 1.Ubuntu   方法1:在/etc/init/rc-sysinit.conf中设置 # Default runlevel, this may be overriden on the kernel command-line # or by faking an old…
详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt243 谈mapreduce运行机制,可以从很多不同的角度来描述,比如说从mapreduce运行流程来讲解,也可以从计算模型的逻辑流程来进行讲解,也许有些深入理解了mapreduce运行机制还会从更好的角度来描述,但是将mapreduce运行机制有些东西是避免不了的,就是一个个参入的实例对象,一个就是计算模型的逻辑定义阶段,我这里讲解不从什么流程出发,就从这些一个个牵涉的对象…
MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算.MapReduce采用”分而治之”的思想,把对大规模数据集的操作,分发给一个主节点管理下的各个分节点共同完成,然后通过整合各个节点的中间结果,得到最终结果.简单地说,MapReduce就是”任务的分解与结果的汇总”. MapReduce架构 先来看一下MapReduce1.0的架构图 上图中的TaskTracker对应HDFS中的DataNode, 在MapReduce1.x中,用于执行MapReduce任务的机器角色有…
Apache和Nginx运行原理解析 原文:https://www.server110.com/nginx/201402/6543.html Web服务器 Web服务器也称为WWW(WORLD WIDE WEB)服务器,主要功能是提供网上信息浏览服务. 应用层使用HTTP协议. HTML文档格式. 浏览器统一资源定位器(URL). Web服务器常常以B/S(Browser/Server)方式提供服务.浏览器和服务器的交互方式如下: GET /index.php HTTP/1.1 +-------…
Android 平台目前提供了两大类动画,在 Android 3.0 之前,一大类是 View Animation,包括 Tween animation(补间动画),Frame animation(帧动画),在 Android 3.0 中又引入了一个新的动画系统:Property Animation,即属性动画.本篇文章主要介绍 View Animation 的运行原理. View Animation 可以使视图执行补间动画.即给定两个关键帧,然后中间部分按照一定的算法自动计算补充. 补间动画的…
1 概述 该瞅瞅MapReduce的内部执行原理了,曾经仅仅知道个皮毛,再不搞搞,不然怎么死的都不晓得.下文会以2.4版本号中的WordCount这个经典样例作为分析的切入点.一步步来看里面究竟是个什么情况. 2 为什么要使用MapReduce Map/Reduce.是一种模式,适合解决并行计算的问题,比方TopN.贝叶斯分类等. 注意.是并行计算,而非迭代计算,像涉及到层次聚类的问题就不太适合了. 从名字能够看出,这样的模式有两个步骤,Map和Reduce. Map即数据的映射,用于把一组键值…
4.3 Map类    创建Map类和map函数.map函数是org.apache.hadoop.mapreduce.Mapper类中的定义的,当处理每一个键值对的时候,都要调用一次map方法,用户须要覆写此方法.此外还有setup方法和cleanup方法. map方法是当map任务開始运行的时候调用一次,cleanup方法是整个map任务结束的时候运行一次. 4.3.1 Map介绍    Mapper类是一个泛型类.带有4个參数(输入的键,输入的值,输出的键,输出的值). 在这里输入的键为Ob…
1.MapReduce是什么 Hadoop MapReduce是一个软件框架,基于该框架能够容易地编写应用程序,这些应用程序能够运行在由上千个商用机器组成的大集群上,并以一种可靠的,具有容错能力的方式并行地处理上TB级别的海量数据集.这个定义里面有着这些关键词, 一是软件框架,二是并行处理,三是可靠且容错,四是大规模集群,五是海量数据集. 2 MapReduce做什么 MapReduce擅长处理大数据,它为什么具有这种能力呢?这可由MapReduce的设计思想发觉.MapReduce的思想就是“…
市面上的hadoop权威指南一类的都是老版本的书籍了,索性学习并翻译了下最新版的Hadoop:The Definitive Guide, 4th Edition与大家共同学习. 我们通过提交jar包,进行MapReduce处理,那么整个运行过程分为五个环节: 1.向client端提交MapReduce job. 2.随后yarn的ResourceManager进行资源的分配. 3.由NodeManager进行加载与监控containers. 4.通过applicationMaster与Resou…
2000年, PHP4.0发布的时候,引入了Zend Engine. Zend引擎把PHP代码的执行切分成两个阶段: 一. Zend Engine 解析PHP代码并生成二进制中间码Zend Opcodes, Zend Opcodes类似于java bytecodes 二. Zend Engine解释运行Opcodes 这些Opcodes被设计成可能被加载在内存中,这是通过opcode caching extensions实现的. 关于这些缓存扩展可以查阅: http://en.wikipedia…
Web服务器 Web服务器也称为WWW(WORLD WIDE WEB)服务器,主要功能是提供网上信息浏览服务. 应用层使用HTTP协议. HTML文档格式. 浏览器统一资源定位器(URL). Web服务器常常以B/S(Browser/Server)方式提供服务.浏览器和服务器的交互方式如下: GET /index.php HTTP/1.1 +---------------+                   +----------------+  |               +------…
Hadoop中的MapReduce是一个使用简单的软件框架,基于它写出来的应用程序能够运行在由上千个机器组成的大型集群上,并且以一种可靠容错并行处理TB级别的数据集. 一个MapReduce作业(job)通常会把输入的数据集切分为若干独立的数据块,由Map任务并行处理它们.框架会对map函数的输出先进行排序,然后把结果输入 给Reduce任务.通常作业的输入和输出都会被存储在文件系统中.整个框架负责任务的调度和和监控,以及重新执行已经失败的任务. 通常,MapReduce框架和分布式文件系统是运…
需求 我们在考虑hadoop map-reduce框架的时候,最重要需包括: 1. reliability 可靠性,主要是jobtracker,resource manager可靠性 2. availability 可用性  3. scalability 可扩展性,能支撑10000到20000节点的cluster 4. backward compatibility 向后兼容性,支持之前写mapreduce application能不用修改而直接在新的框架上运行 5. evolution 可演化性…
原文:1.http://blog.csdn.net/liaodehong/article/details/50488098 2.Stack的三种含义 (阮一峰) 3. http://lib.csdn.net/base/javascript 主线程从"任务队列"中读取事件,这个过程是循环不断的,所以整个的这种运行机制又称为Event Loop(事件循环). 上图中,主线程运行的时候,产生堆(heap)和栈(stack),栈中的代码调用各种外部API,它们在"任务队列"…
我们这一节会先去分析下monkeyrunner是如何对参数进行处理的,我们跳转到MonkeyRunnerOptions这个类里面的processOptions这个方法: 93   public static MonkeyRunnerOptions processOptions(String[] args) 94   { 95     int index = 0; 96 97     String hostname = DEFAULT_MONKEY_SERVER_ADDRESS; 98     F…
研究MapReduce已经有一段时间了.起初是从分析WordCount程序开始,后来开始阅读Hadoop源码,自认为已经看清MapReduce的运行流程.现在把自己的理解贴出来,与大家分享,欢迎纠错. 还是以最经典的WordCount程序作为基础,来分析map阶段.reduce阶段和最复杂的shuffle阶段. 文本1:hello world                                      文本2:map reduce hello hadoop            …
这次想来梳理一下 View 动画也就是补间动画(ScaleAnimation, AlphaAnimation, TranslationAnimation...)这些动画运行的流程解析.内容并不会去分析动画的呈现原理是什么,诸如 Matrix 这类的原理是什么,因为我也还没搞懂.本篇主要是分析当调用了 View.startAnimation() 之后,动画从开始到结束的一个运行流程是什么? 提问环节 看源码最好是带着问题去,这样比较有目的性和针对性,可以防止阅读源码时走偏和钻牛角,所以我们就先来提…
Facebook 于2015年9月15日推出react native for Android 版本, 加上2014年底已经开源的IOS版本,至此RN (react-native)真正成为跨平台的客户端框架.本篇主要是从分析代码入手,探讨一下RN在安卓平台上是如何构建一套JS的运行框架. 一. 整体架构 RN 这套框架让 JS开发者可以大部分使用JS代码就可以构建一个跨平台APP. Facebook官方说法是learn once, run everywhere, 即在Android . IOS.…
一.客户端 Map-Reduce的过程首先是由客户端提交一个任务开始的. 提交任务主要是通过JobClient.runJob(JobConf)静态函数实现的: public static RunningJob runJob(JobConf job) throws IOException { //首先生成一个JobClient对象 JobClient jc = new JobClient(job); …… //调用submitJob来提交一个任务 running = jc.submitJob(jo…
Mapreduce的运算过程为两个阶段: 第一个阶段的map task相互独立,完全并行: 第二个阶段的reduce task也是相互独立,但依赖于上一阶段所有map task并发实例的输出: 这些task任务分布在多台机器运行,它的运行管理是有一个master负责,这个master由yarn负责启动,那么yarn如何知道启动多少个map task进程去计算呢? 下面概述一下Mapreduce的执行流程: 1.客户端首先会访问hdfs的namenode获取待处理数据的信息(文件数及文件大小),形…
Web服务器 Web服务器也称为WWW(WORLD WIDE WEB)服务器,主要功能是提供网上信息浏览服务. 应用层使用HTTP协议. HTML文档格式. 浏览器统一资源定位器(URL). Web服务器常常以B/S(Browser/Server)方式提供服务.浏览器和服务器的交互方式如下: GET /index.php HTTP/1.1 +---------------+                   +----------------+  |               +------…
第1章 Spark Streaming 概述1.1 什么是 Spark Streaming1.2 为什么要学习 Spark Streaming1.3 Spark 与 Storm 的对比第2章 运行 Spark Streaming第3章 架构与抽象第4章 Spark Streaming 解析4.1 初始化 StreamingContext4.2 什么是 DStreams4.3 DStream 的输入4.3.1 基本数据源4.3.2 高级数据源4.4 DStream 的转换4.4.1 无状态转化操作…
和HDFS一样,MapReduce也是采用Master/Slave的架构 MapReduce1包含4个部分:Client.JobTracker.TaskTracker和Task Client 将JAR文件.配置参数Configuration.计算分片.Distributed Cache 文件存储在HDFS 向 JobTracker 申请JobId JobTracker 负责资源监控和作业调度 监控所有TaskTracker 与job的健康状况,一旦发现失败,就将相应的任务转移到其他节点 跟踪任务…
原文 一.Map的原理和运行流程 Map的输入数据源是多种多样的,我们使用hdfs作为数据源.文件在hdfs上是以block(块,Hdfs上的存储单元)为单位进行存储的. 1.分片 我们将这一个个block划分成数据分片,即Split(分片,逻辑划分,不包含具体数据,只包含这些数据的位置信息),那么上图中的第一个Split则对应两个个文件块,第二个Split对应一个块.需要注意的是一个Split只会包含一个File的block,不会跨文件  2. 数据读取和处理 当我们把数据块分好的时候,Map…
一.Map的原理和运行流程 Map的输入数据源是多种多样的,我们使用hdfs作为数据源.文件在hdfs上是以block(块,Hdfs上的存储单元)为单位进行存储的. 1.分片 我们将这一个个block划分成数据分片,即Split(分片,逻辑划分,不包含具体数据,只包含这些数据的位置信息),那么上图中的第一个Split则对应两个个文件块,第二个Split对应一个块.需要注意的是一个Split只会包含一个File的block,不会跨文件.  2. 数据读取和处理 当我们把数据块分好的时候,MapRe…
一.客户端 Map-Reduce的过程首先是由客户端提交一个任务开始的. 提交任务主要是通过JobClient.runJob(JobConf)静态函数实现的: public static RunningJob runJob(JobConf job) throws IOException {   //首先生成一个JobClient对象 JobClient jc = new JobClient(job); ……   //调用submitJob来提交一个任务 running = jc.submitJo…
一.客户端 Map-Reduce的过程首先是由客户端提交一个任务开始的. 提交任务主要是通过JobClient.runJob(JobConf)静态函数实现的: public static RunningJob runJob(JobConf job) throws IOException {   //首先生成一个JobClient对象 JobClient jc = new JobClient(job); ……   //调用submitJob来提交一个任务 running = jc.submitJo…
简单说来,一个java程序的运行需要编辑源码.编译生成class文件.加载class文件.解释或编译运行class中的字节码指令. 下面有一段简单的java源码,通过它来看一下java程序的运行流程: class Person { private String name; private int age; public Person(int age, String name){ this.age = age; this.name = name; } public void run(){ } }…