首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
数据库分库分表(sharding)系列(四) 多数据源的事务处理
】的更多相关文章
数据库分库分表(sharding)系列(四) 多数据源的事务处理
系统经sharding改造之后,原来单一的数据库会演变成多个数据库,如何确保多数据源同时操作的原子性和一致性是不得不考虑的一个问题.总体上看,目前对于一个分布式系统的事务处理有三种方式:分布式事务.基于Best Efforts 1PC模式的事务以及事务补偿机制.我们下面对这三种处理方式一一进行分析.本文原文链接:http://blog.csdn.net/bluishglc/article/details/7793172 转载请注明出处! 分布式事务 这是最为人们所熟知的多数据源事务处理机制.本文…
数据库分库分表(sharding)系列【转】
原文地址:http://www.uml.org.cn/sjjm/201211212.asp数据库分库分表(sharding)系列 目录; (一) 拆分实施策略和示例演示 (二) 全局主键生成策略 (三) 关于使用框架还是自主开发以及sharding实现层面的考量 (四) 多数据源的事务处理 (五) 一种支持自由规划无须数据迁移和修改路由代码的Sharding扩容方案 (一) 拆分实施策略和示例演示 第一部分:实施策略 图1.数据库分库分表(sharding)实施策略图解 1.准备阶段 对数据库进…
数据库分库分表(sharding)系列
数据库分库分表(sharding)系列 目录; (一) 拆分实施策略和示例演示 (二) 全局主键生成策略 (三) 关于使用框架还是自主开发以及sharding实现层面的考量 (四) 多数据源的事务处理 (五) 一种支持自由规划无须数据迁移和修改路由代码的Sharding扩容方案 (一) 拆分实施策略和示例演示 第一部分:实施策略 图1.数据库分库分表(sharding)实施策略图解 1.准备阶段 对数据库进行分库分表(Sharding化)前,需要开发人员充分了解系统业务逻辑和数据库sch…
转数据库分库分表(sharding)系列(二) 全局主键生成策略
本文将主要介绍一些常见的全局主键生成策略,然后重点介绍flickr使用的一种非常优秀的全局主键生成方案.关于分库分表(sharding)的拆分策略和实施细则,请参考该系列的前一篇文章:数据库分库分表(sharding)系列(一) 拆分实施策略和示例演示 本文原文连接: http://blog.csdn.net/bluishglc/article/details/7710738 ,转载请注明出处! 第一部分:一些常见的主键生成策略 一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键…
数据库分库分表(sharding)系列(二) 全局主键生成策略
本文将主要介绍一些常见的全局主键生成策略,然后重点介绍flickr使用的一种非常优秀的全局主键生成方案.关于分库分表(sharding)的拆分策略和实施细则,请参考该系列的前一篇文章:数据库分库分表(sharding)系列(一) 拆分实施策略和示例演示 本文原文连接: http://blog.csdn.net/bluishglc/article/details/7710738 ,转载请注明出处! 第一部分:一些常见的主键生成策略 一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键…
数据库分库分表(sharding)系列(一) 拆分规则
第一部分:实施策略 数据库分库分表(sharding)实施策略图解 1. 垂直切分垂直切分的依据原则是:将业务紧密,表间关联密切的表划分在一起,例如同一模块的表.结合已经准备好的数据库ER图或领域模型图,仿照活动图中的泳道概念,一个泳道代表一个shard,把所有表格划分到不同的泳道中. 2. 水平切分垂直切分后,需要对shard内表格的数据量和增速进一步分析,以确定是否需要进行水平切分.2.1若划分到一起的表格数据增长缓慢,在产品上线后可遇见的足够长的时期内均可以由单一数据库承载,则不需要进行水…
转数据库分库分表(sharding)系列(一) 拆分实施策略和示例演示
本文原文连接: http://blog.csdn.net/bluishglc/article/details/7696085 ,转载请注明出处!本文着重介绍sharding切分策略,如果你对数据库sharding缺少基本的了解,请参考我另一篇从基础理论全面介绍sharding的文章:数据库Sharding的基本思想和切分策略 第一部分:实施策略 图1.数据库分库分表(sharding)实施策略图解(点击查看大图) 1.准备阶段 对数据库进行分库分表(Sharding化)前,需要开发人员充分了解系…
数据库分库分表(sharding)系列(一)拆分实施策略和示例演示
本文原文连接: http://blog.csdn.net/bluishglc/article/details/7696085 ,转载请注明出处!本文着重介绍sharding切分策略,如果你对数据库sharding缺少基本的了解,请参考我另一篇从基础理论全面介绍sharding的文章:数据库Sharding的基本思想和切分策略 第一部分:实施策略 图1.数据库分库分表(sharding)实施策略图解(点击查看大图) 1.准备阶段 对数据库进行分库分表(Sharding化)前,需要开发人员充分了解系…
数据库分库分表(sharding)系列(五) 一种支持自由规划无须数据迁移和修改路由代码的Sharding扩容方案
作为一种数据存储层面上的水平伸缩解决方案,数据库Sharding技术由来已久,很多海量数据系统在其发展演进的历程中都曾经历过分库分表的Sharding改造阶段.简单地说,Sharding就是将原来单一数据库按照一定的规则进行切分,把数据分散到多台物理机(我们称之为Shard)上存储,从而突破单机限制,使系统能以Scale-Out的方式应对不断上涨的海量数据,但是这种切分对上层应用来说是透明的,多个物理上分布的数据库在逻辑上依然是一个库.实现Sharding需要解决一系列关键的技术问题,这些问题主…
数据库分库分表(sharding)系列(三) 关于使用框架还是自主开发以及sharding实现层面的考量
当团队对系统业务和数据库进行了细致的梳理,确定了切分方案后,接下来的问题就是如何去实现切分方案了,目前在sharding方面有不少的开源框架和产品可供参考,同时很多团队也会选择自主开发实现,而不管是选择框架还是自主开发,都会面临一个在哪一层上实现sharding逻辑的问题,本文会对这一系列的问题逐一进行分析和考量.本文原文连接: http://blog.csdn.net/bluishglc/article/details/7766508转载请注明出处! 一.sharding逻辑的实现层面 从一个…
据库分库分表(sharding)系列(一) 拆分实施策略和示例演示
本文原文连接: http://blog.csdn.net/bluishglc/article/details/7696085 ,转载请注明出处!本文着重介绍sharding切分策略,如果你对数据库sharding缺少基本的了解,请参考我另一篇从基础理论全面介绍sharding的文章:数据库Sharding的基本思想和切分策略 第一部分:实施策略 图1.数据库分库分表(sharding)实施策略图解(点击查看大图) 1.准备阶段 对 数据库进行分库分表(Sharding化)前,需要开发人员充分了解…
mysql数据库分库分表(Sharding)
mysql数据库切分 前言 通过MySQLReplication功能所实现的扩展总是会受到数据库大小的限制.一旦数据库过于庞大,尤其是当写入过于频繁,非常难由一台主机支撑的时候,我们还是会面临到扩展瓶颈.这时候,我们就必须许找其它技术手段来解决这个瓶颈,那就是我们这一章所要介绍恶的数据切分技术. 何谓数据切分 可能非常多读者朋友在网上或者杂志上面都已经多次见到关于数据切分的相关文章了,仅仅只是在有些文章中称之为数据的Sharding.事实上无论是称之为数据的Sharding还是数据的切分,其概念…
mysql数据库分库分表(Sharding)(转)
mysql数据库切分 前言 通过MySQLReplication功能所实现的扩展总是会受到数据库大小的限制.一旦数据库过于庞大,尤其是当写入过于频繁,非常难由一台主机支撑的时候,我们还是会面临到扩展瓶颈.这时候,我们就必须许找其它技术手段来解决这个瓶颈,那就是我们这一章所要介绍恶的数据切分技术. 何谓数据切分 可能非常多读者朋友在网上或者杂志上面都已经多次见到关于数据切分的相关文章了,仅仅只是在有些文章中称之为数据的Sharding.事实上无论是称之为数据的Sharding还是数据的切分,其概念…
数据库分库分表(sharding)
地址: http://blog.csdn.net/column/details/sharding.html…
分布式事务-Sharding 数据库分库分表
Sharding (转)大型互联网站解决海量数据的常见策略 - - ITeye技术网站 阿里巴巴Cobar架构设计与实践 - 机械机电 - 道客巴巴 阿里分布式数据库服务原理与实践:沈询_文档下载_IT168文库 阿里分布式数据库实践.pdf_微盘下载 阿里开源Mysql分布式中间件:Cobar - 沙漠绿树 - ITeye技术网站 阿里云产品博客 » SQL解析过程详解 阿里云分布式RDS平台——柳彦召:阿里云RDS高级开发工程师_文档下载_IT168文库 笔者带你剖析淘宝TDDL——Ma…
java 取模运算% 实则取余 简述 例子 应用在数据库分库分表
java 取模运算% 实则取余 简述 例子 应用在数据库分库分表 取模运算 求模运算与求余运算不同.“模”是“Mod”的音译,模运算多应用于程序编写中. Mod的含义为求余.模运算在数论和程序设计中都有着广泛的应用,从奇偶数的判别到素数的判别,从模幂运算到最大公约数的求法,从孙子问题到凯撒密码问题,无不充斥着模运算的身影.虽然很多数论教材上对模运算都有一定的介绍,但多数都是以纯理论为主,对于模运算在程序设计中的应用涉及不多. 取余运算区别 对于整型数a,b来说,取模运算或者求余运算的方法都是:…
php面试专题---mysql数据库分库分表
php面试专题---mysql数据库分库分表 一.总结 一句话总结: 通过数据切分技术将一个大的MySQLServer切分成多个小的MySQLServer,既攻克了写入性能瓶颈问题,同一时候也再一次提升了整个数据库集群的扩展性.不论是通过垂直切分,还是水平切分.都能够让系统遇到瓶颈的可能性更小.尤其是当我们使用垂直和水平相结合的切分方法之后,理论上将不会再遇到扩展瓶颈了. 1.分库分表解决系统负载的流程是什么? 1.先垂直分表,代价小 2.再水平分表 每一个应用系统的负载都是一步一步增长上来的,…
Mysql系列四:数据库分库分表基础理论
一.数据处理分类 1. 海量数据处理,按照使用场景主要分为两种类型: 联机事务处理(OLTP) 面向交易的处理系统,其基本特征是原始数据可以立即传送到计算机中心进行处理,并在很短的时间内给出处理结果.简单地说,主要是对数据的插入.修改.删除,所以对事物和实时性要求比较高. 联机分析处理(OLAP) 通过多维的方式对数据进行分析.查询和报表,可以同数据挖掘工具.统计分析工具配合使用,增强决策分析功能.简单地说,主要是对海量数据的查询统计分析 2. OLTP和OLAP的比较 OLTP OLAP…
【转】mysql分库分表,数据库分库分表思路
原文:https://www.cnblogs.com/butterfly100/p/9034281.html 同类参考:[转]数据库的分库分表基本思想 数据库分库分表思路 一. 数据切分 关系型数据库本身比较容易成为系统瓶颈,单机存储容量.连接数.处理能力都有限.当单表的数据量达到1000W或100G以后,由于查询维度较多,即使添加从库.优化索引,做很多操作时性能仍下降严重.此时就要考虑对其进行切分了,切分的目的就在于减少数据库的负担,缩短查询时间. 数据库分布式核心内容无非就是数据切分(S…
MariaDB Spider 数据库分库分表实践
分库分表 一般来说,数据库分库分表,有以下做法: 按哈希分片:根据一条数据的标识计算哈希值,将其分配到特定的数据库引擎中: 按范围分片:根据一条数据的标识(一般是值),将其分配到特定的数据库引擎中: 按列表分片:根据某些字段的标识,如果符合条件则分配到特定的数据库引擎中. 分库分表的做法有很多种,例如编写代码库,在程序中支持多数据库,程序需要知道每个数据库的地址,并要编写代码进行支持:使用中间件将多个数据库引擎连接起来,程序只需要知道中间件地址. 但是分库分表后,因为任意两个表可能在不同的数据库…
当当开源sharding-jdbc,轻量级数据库分库分表中间件
近期,当当开源了数据库分库分表中间件sharding-jdbc. Sharding-JDBC是当当应用框架ddframe中,从关系型数据库模块dd-rdb中分离出来的数据库水平分片框架,实现透明化数据库分库分表访问.Sharding-JDBC是继dubbox和elastic-job之后,ddframe系列开源的第3个项目. Sharding-JDBC直接封装JDBC协议,可以理解为增强版的JDBC驱动,旧代码迁移成本几乎为零. Sharding-JDBC定位为轻量级java框架,使用客户端直连数…
sharding-jdbc,轻量级数据库分库分表中间件
Sharding-JDBC是当当应用框架ddframe中,从关系型数据库模块dd-rdb中分离出来的数据库水平分片框架,实现透明化数据库分库分表访问.Sharding-JDBC是继dubbox和elastic-job之后,ddframe系列开源的第3个项目. Sharding-JDBC直接封装JDBC协议,可以理解为增强版的JDBC驱动,旧代码迁移成本几乎为零. Sharding-JDBC定位为轻量级java框架,使用客户端直连数据库,以jar包形式提供服务,无proxy代理层,无需…
Java实战:教你如何进行数据库分库分表
摘要:本文通过实际案例,说明如何按日期来对订单数据进行水平分库和分表,实现数据的分布式查询和操作. 本文分享自华为云社区<数据库分库分表Java实战经验总结 丨[绽放吧!数据库]>,作者: jackwangcumt. 我们知道,当前的应用都离不开数据库,随着数据库中的数据越来越多,单表突破性能上限记录时,如MySQL单表上线估计在近千万条内,当记录数继续增长时,从性能考虑,则需要进行拆分处理.而拆分分为横向拆分和纵向拆分.一般来说,采用横向拆分较多,这样的表结构是一致的,只是不同的数据存储在不…
阿里P8架构师谈:数据库分库分表、读写分离的原理实现,使用场景
本文转载自:阿里P8架构师谈:数据库分库分表.读写分离的原理实现,使用场景 为什么要分库分表和读写分离? 类似淘宝网这样的网站,海量数据的存储和访问成为了系统设计的瓶颈问题,日益增长的业务数据,无疑对数据库造成了相当大的负载,同时对于系统的稳定性和扩展性提出很高的要求.随着时间和业务的发展,数据库中的表会越来越多,表中的数据量也会越来越大,相应地,数据操作的开销也会越来越大:另外,无论怎样升级硬件资源,单台服务器的资源(CPU.磁盘.内存.网络IO.事务数.连接数)总是有限的,最终数据库所能承载…
Mysql系列五:数据库分库分表中间件mycat的安装和mycat配置详解
一.mycat的安装 环境准备:准备一台虚拟机192.168.152.128 1. 下载mycat cd /softwarewget http:-linux.tar.gz 2. 解压mycat tar -zxvf Mycat-server-1.6-RELEASE-20161028204710-linux.tar.gz 3. 剪切mycat到/usr/local目录下 mv /software/mycat /usr/local 4. 启动mycat /usr/local/mycat/bin/myc…
MySQL系列(八)--数据库分库分表
在互联网公司或者一些并发量比较大的项目,虽然有各种项目架构设计.NoSQL.MQ.ES等解决比较高的并发访问,但是对于数据库来说,压力 还是太大,这时候即使数据库架构.表结构.索引等都设计的很好了,但是还是扛不住的,主从复制通过读写分离缓解读负载.但是像淘宝这种项目, 单一数据库肯定是不行的,为了解决这个问题,就可以使用分库分表 PS:这是一篇学习博客,本人没实操过,适合作为入门了解或者面试,如果深入了解,请自行百度大佬的文章 分库分表的方式: 1.把一个实例的多个数据库拆分到不同的实例,这个实…
mysql数据库分库分表shardingjdbc
分库分表理解 分库分表应用于互联网的两个场景;大量数据和高并发,通常策略有两种:垂直分库,水平拆分 垂直拆分:是根据业务将一个库拆分为多个库,将一个表拆分为多个表,例如:将不常用的字段和经常访问的字段分开存放,在实际开发由于跟业务关系紧密,所以一般采用水平拆分. 水平拆分:则是根据分片算法讲一个库拆分为多个库,来进行维护,与垂直拆分不同,水平拆分是按照一定的规则进行拆分,将不同的数据拆分至不同的物理库. 关系型数据库在大于一定数据量的情况下检索性能会急剧下降.在面对互联网海量数据情况时,所有数据…
django数据库配置,即数据库分库分表
一 Django的数据库配置 (一)修改settings.py文件关于数据库的配置: Django默认使用sqlite: DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', # sqlite引擎 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } 再添加一个数据库: DATABASES = { 'default': { 'ENGINE': 'django.…
数据库分库分表和带来的唯一ID、分页查询问题的解决
需求缘起(用一个公司的发展作为背景) 1.还是个小公司的时候,注册用户就20w,每天活跃用户1w,每天最大单表数据量就1000,然后高峰期每秒并发请求最多就10,此时一个16核32G的服务器,每秒请求支撑在2000左右,负载合理,没有太大压力,基本没有宕机风险. 2.当注册用户达到2000W,每天活跃用户数100W,每天单表新增数据量达到50W条,高峰期请求量达到1W.经过一段时间的运行,单标数据量会越来越多,带来的问题 2.1 数据库服务器的IO,网络宽带,CPU负载,内存消耗都会达到非常…
面试官:说说Mysql数据库分库分表,并且会有哪些问题?
之前一篇文章已经谈到了数据库集群之主从集群也就是读写分离,也提到了读写分离其实只是分担了访问的压力,但是存储的压力没有解决. 存储的压力说白了就是随着系统的演化,需求的增加,可能表的数量会逐渐增多,比如一段时间上个新功能就得加个表.并且随着用户量的增多类似用户表的行数肯定会增多,订单表的数据肯定会随着时间而增多,当这种数据量达到千万甚至上亿的时候,读写分离就已经满足不了,读写性能下降严重. 也就是一台服务器的资源例如CPU.内存.IO.磁盘等是有限的,所以这时候分库分表就上啦! 分库 分库讲白了…