「Foundation」集合】的更多相关文章

一.NSArray和NSMutableArray (一)NSArray不可变数组 (1)NSArray的基本介绍 NSArray是OC中使用的数组,是面向对象的,以面向对象的形式操纵对象,是不可变数组. C语言数组有一个缺点即数组中只能存放同种数据类型的元素. OC数组只能存放OC对象,不能存放非OC对象,如int,结构体和枚举等. (2)NSArray的创建 (3)NSArray的访问 (4)NSArray的遍历 数组的遍历有以下几种方式: 首先创建一个数组   方法一:使用for循环遍历 方…
系列文章: 「 深入浅出 」java集合Collection和Map 「 深入浅出 」集合List 「 深入浅出 」集合Set 前面已经介绍完了Collection接口下的集合实现类,今天我们来介绍Map接口下的几个重要的集合实现类HashMap,Hashtable,LinkedHashMap,TreeMap. HashMap (最常用,随机访问速度快,无序,可存一个Null key,多个Null value,非同步) HashMap是最常用的Map,它根据键的HashCode值存储数据,根据键…
系列文章 「 深入浅出 」集合List 「 深入浅出 」java集合Collection和Map Set继承自Collection接口,不能包含有重复元素.本篇文章主要讲Set中三个比较重要的实现类:HashSet.TreeSet. Set Set是一个存储无序且不重复元素的集合. 在使用Set集合的时候,应该注意两点 为Set集合里的元素的实现类重写equals()和hashCode()方法() 若传入重复的元素,重复元素会被忽略(可以用于做集合的去重) 扩展 判断两个元素相等的标准:两个对象…
「BZOJ2839」集合计数 题目大意: 一个包含 \(n\) 个数的集合有 \(2^n\) 个子集,从这些子集中取出若干个集合(至少一个),使他们的交集的元素个数恰好为 \(k\),求方案数,答案对 \(1e9+7\) 取模. 首先考虑一个很直观的思路:我们钦定 \(k\) 个数是他们的交集,则这样的方案数为 \(\binom{n}{k}\) ,同时,包含这 \(k\) 个数的集合个数为 \(2^{n-k}\) ,每个集合有选与不选两个状态,但依据题意,不能够全部不选,所以这样得到的总方案数…
第一篇文章 「 深入浅出 」java集合Collection和Map 主要讲了对集合的整体介绍,本篇文章主要讲List相对于Collection新增的一些重要功能以及其重要子类ArrayList.LinkedList.Vector 一.List集合 关于List集合的介绍与方法,可参考第一篇文章 「 深入浅出 」java集合Collection和Map 迭代方法ListIterator 相对于其它集合,List集合添加了一种新的迭代方法ListIterator ListIterator的方法如下…
一.Foundation框架中一些常用的类 字符串型: NSString:不可变字符串 NSMutableString:可变字符串 集合型: 1)NSArray:OC不可变数组  NSMutableArray:可变数组 2)NSSet:  NSMutableSet: 3)NSDictiorary  NSMutableDictiorary 其它: NSDate NSObject 二.NSString和NSMutableString的使用与注意 (一)6种创建字符串的方式 (二)使用注意 (1)字符…
一.基本知识 Foundation—基础框架.框架中包含了很多开发中常用的数据类型,如结构体,枚举,类等,是其他ios框架的基础. 如果要想使用foundation框架中的数据类型,那么包含它的主头文件就可以了. 即#import<foundation/foundation.h> 补充:core foundation框架相对底层,里面的代码几乎都是c语言的,而foundation中是OC的. 二.常用的结构体介绍及简单使用 常用的结构体: (一)NSRang的基本使用   (二)NSPoint…
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \sum_{i=0}^{T-1} [(i\in A\pmod P)\land(i\in B\pmod Q)] \] 换言之,就是问有多少个小于 \(T\) 的非负整数 \(x\) 满足:\(x\) 除以 \(P\) 的余数属于 \(A\) 且 \(x\) 除以 \(Q\) 的余数属于 \(B\). 输…
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一直随机游走,直到点集 \(S\) 中所有点都至少经过一次的话,期望游走几步. 特别地,点 \(x\)(即起点)视为一开始就被经过了一次. 答案对 $998244353 $ 取模. 输入格式 第一行三个正整数 \(n,Q,x\). 接下来 \(…
Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 \(x\) 欧拉或者 \(x\) 木大表示有 \(x\) 个欧拉或者木大. 为了简化内容我们现在用字母表示喊出的话. 我们用数字和字母来表示一个串,例如:2 a 3 b 表示的串就是 aabbb. 一开始漫画中什么话都没有,接下来你需要依次实现 \(n\) 个操作,总共只有 \(2\) 种操作:…
「NOI2015」寿司晚宴 这个题思路其实挺自然的,但是我太傻了...最开始想着钦定一些,结果发现假了.. 首先一个比较套路的事情是状压前8个质数,后面的只会在一个数出现一次的再想办法就好. 然后发现有个重要的事情是后面每个质因子\(x\)做统计的时候都是独立的,那么单独做就好了 显然要压两个人的前面质因子集合\(f_{i,j}\)代表两个人分别是\(i,j\)集合的答案,然后一块一块的加后面的质因子就好 加每一块时,我们显然需要处理谁选择了这一块或者都没选,再搞个\(dp_{0/1,i,j}\…
「JLOI2015」管道连接 先按照斯坦纳树求一个 然后合并成斯坦纳森林 直接枚举树的集合再dp一下就好了 Code: #include <cstdio> #include <cctype> #include <cstring> #include <algorithm> using std::min; const int N=1<<10; template <class T> void read(T &x) { x=0;cha…
「SCOI2014」方伯伯运椰子 可以看出是分数规划 然后我们可以看出其实只需要改变1的流量就可以了,因为每次改变要保证流量守恒,必须流成一个环,在正负性确定的情况下,变几次是无所谓的. 然后按照套路,设 \[ ans=\frac{X-Y}{k}\\ ans\times k =X-Y\\ ans\times k=-\sum w_i\\ \sum ans-w_i=0 \] 从第二部到第三步是把X和Y中的共同边都减掉了 \(w\)是根据扩容或者缩容建的边权为\(b+d,a-d\)的边权集合 注意一点…
「SCOI2014」方伯伯的商场之旅 我一开始的想法会被两个相同的集合位置去重给搞死,不过应该还是可以写的,讨论起来老麻烦. 可以先钦定在\(1\)号点集合,然后往后调整一部分. 具体一点,通过前缀和减去后缀和的正负性移动 写的时候把\(sum\)压进去搞会非常简单 Code #include <cstdio> #include <cstring> #define ll long long ll dp[25][3000];int bit[25],k; ll dfs(int dep,…
「SDOI2014」重建 题意 给一个图\(G\),两点\((u,v)\)有边的概率是\(p_{u,v}\),求有\(n-1\)条边通行且组成了一颗树的概率是多少. 抄了几个矩阵树定理有趣的感性说法 矩阵树定理的度数矩阵记录的是每个点的边权和,邻接矩阵记录的是边权,求的则是所有生成树的边权乘积和 考虑Kirchhoff矩阵的意义:\(K[G]=D[G]−A[G]=B[G]B^T[G]\),之所以能够进行生成树计数是对于其伴随矩阵在计数\(n−1\)条边的集合时,当\(n−1\)条边中存在环就会产…
「SDOI2014」数数 题目描述 我们称一个正整数 \(N\) 是幸运数,当且仅当它的十进制表示中不包含数字串集合 \(S\) 中任意一个元素作为其子串. 例如当 \(S=(\)22, 333, 0233\()\) 时,233 是幸运数,2333.20233.3223 不是幸运数. 给定 \(N\) 和 \(S\),计算不大于 \(N\) 的幸运数个数. 输入格式 输入的第一行包含整数 \(N\). 接下来一行一个整数 \(M\),表示 \(S\) 中元素的数量. 接下来 \(M\) 行,每行…
「SDOI2014」向量集 维护一个向量集合,在线支持以下操作: A x y :加入向量 \((x, y)\): Q x y l r:询问第 \(L\) 个到第 \(R\) 个加入的向量与向量 \((x, y)\) 的点积的最大值.集合初始时为空. 对于所有的数据,\(1 \leq N \leq 4 \times 10^5\),操作中的向量坐标满足 \(|x|,|y| \leq 10^8\),询问满足 \(1 \leq L \leq R \leq T\),其中 \(T\) 为已经加入的向量个数.…
「WC2018」州区划分(FWT) 我去弄了一个升级版的博客主题,比以前好看多了.感谢 @Wider 不过我有阅读模式的话不知为何 \(\text{LATEX}\) 不能用,所以我就把这个功能删掉了. 洛谷上不开 \(O_2\) 根本过不去,自带大常数被卡到 \(15\) 分... 首先题了读了很久,发现一个州的集合可以不连通... 我们可以 \(O(n^22^n)\) 检验每一个状态是否满足条件,用并查集即可. \(f[S]\) 为状态 \(S\) 时的满意度之和,\(g[S]\) 当状态 \…
「NOI2018」你的名字 题目描述 小A 被选为了\(ION2018\) 的出题人,他精心准备了一道质量十分高的题目,且已经 把除了题目命名以外的工作都做好了. 由于\(ION\) 已经举办了很多届,所以在题目命名上也是有规定的,\(ION\) 命题手册规 定:每年由命题委员会规定一个小写字母字符串,我们称之为那一年的命名串,要求每道题的名字必须是那一年的命名串的一个非空连续子串,且不能和前一年的任何一道题目的名字相同. 由于一些特殊的原因,小A 不知道\(ION2017\) 每道题的名字,但…
「PKUWC2018」猎人杀 解题思路 首先有一个很妙的结论是问题可以转化为已经死掉的猎人继续算在概率里面,每一轮一直开枪直到射死一个之前没死的猎人为止. 证明,设所有猎人的概率之和为 \(W\) ,当前已经死掉了概率之和为 \(T\) 的猎人,原问题下一个射死 \(i\) 的概率 \(P\) 为 \[ P =\dfrac{w_i}{W-T} \] 转化过后的问题下一个射死 \(i\) 的概率为 \[ P=\dfrac{T}{W}P+\dfrac{w_i}{W} \\ \dfrac{W-T}{W…
「WC2016」论战捆竹竿 前置知识 参考资料:<论战捆竹竿解题报告-王鉴浩>,<字符串算法选讲-金策>. Border&Period 若前缀 \(pre(s,x)​\) 与后缀 \(suf(s,n-x-1)​\) 相等,则 \(pre(s, x)​\) 是 \(s​\) 的一个 \(\text{Border}​\). \(x​\) 是 \(s​\) 的一个周期 (\(\text{Preiod}​\)) 满足 \(s[i]=s[i+x],\forall{1\leq i\le…
「UOJ207」共价大爷游长沙 解题思路 : 快速判断两个集合是否完全相等可以随机点权 \(\text{xor}\) 的思路可以用到这道题上面,给每一条路径随机一个点权,维护出经过每一条边的点权的 \(\text{xor}\) 值判断是否和全集相等即可. 因为要支持删边加边操作,可以用一棵 \(\text{lct}\) 来维护.对于删边,相当于是原来经过这条边的路径要改为从新的树上的那条路径经过,那只要将原有的 \(\text{xor}\) 值修改过去即可. /*program by mango…
「Luogu4321」随机游走 题目描述 有一张 \(n\) 个点 \(m\) 条边的无向图,\(Q\) 组询问,每次询问给出一个出发点和一个点集 \(S\) ,求从出发点出发随机游走走遍这个点集的期望步数. \(1 \leq n \leq 18, 1 \leq Q \leq 10^5\) 解题思路 : 听说是 \(\text{pkuwc2018d2t3}\) 加强版?但是原题时限是1s,各种卡不进去感觉一定要写 \(\text{Min-Max}\) 容斥,不过反正我今年听指导建议没报 \(\t…
「UOJ351」新年的叶子 题目描述 有一棵大小为 \(n\) 的树,每次随机将一个叶子染黑,可以重复染,问期望染多少次后树的直径会缩小. \(1 \leq n \leq 5 \times 10^5\) 解题思路 : 首先要利用一个经典的结论,树的所有直径的中心为同一个点/边.不妨给每条边加一个虚拟点,这样整颗树的直径就只会交于同一个点了. 接下来考虑树的直径是由中心的两个儿子的两个深度为 \(maxdep\) 的叶子构成的,所以问题等价于将叶子根据中心的儿子分成若干个集合,对于所有染色方案求染…
「ZJOI2009」多米诺骨牌 题目描述 有一个n × m 的矩形表格,其中有一些位置有障碍.现在要在这个表格内 放一些1 × 2 或者2 × 1 的多米诺骨牌,使得任何两个多米诺骨牌没有重叠部分,任何一个骨牌不能放到障碍上.并且满足任何相邻两行之间都有至少一个骨牌横跨,任何相邻两列之间也都至少有一个骨牌横跨.求有多少种不同的放 置方法,注意你并不需要放满所有没有障碍的格子.\(n, m \leq 15\) 解题思路 : 先考虑没有至少一个骨牌横跨这个限制该怎么做,只需要轮廓线 \(\text{…
「SCOI2016」萌萌哒 题目描述 一个长度为 \(n\) 的大数,用 \(S_1S_2S_3 \ldots S_n\) 表示,其中 \(S_i\) 表示数的第 \(i\) 位,\(S_1\) 是数的最高位,告诉你一些限制条件,每个条件表示为四个数 $(l_1, r_1, l_2, r_2) $,即两个长度相同的区间,表示子串 $S_{l_1}S_{l_1 + 1}S_{l_1 + 2} \ldots S_{r_1} $与 \(S_{l_2}S_{l_2 + 1}S_{l_2 + 2} \ld…
「NOI2018」情报中心 题目描述 C 国和D 国近年来战火纷飞. 最近,C 国成功地渗透进入了D 国的一个城市.这个城市可以抽象成一张有$n$ 个节点,节点之间由$n - 1$ 条双向的边连接的无向图,使得任意两个点之间可以互相到达,也就是说这张无向图实际上是一棵树. 经过侦查,C 国情报部部长GGB 惊讶地发现,这座看起来不起眼的城市竟然是D 国的军事中心.因此GGB 决定在这个城市内设立情报机构.情报专家TAC 在侦查后,安排了$m$ 种设立情报机构的方案.这些方案中,第$i$ 种方案是…
Portal Description 给出一个给出一个\(n(n\leq850)\)个点\(m(m\leq8500)\)条边的无向图.定义\(cut(s,t)\)等于\(s,t\)的最小割的容量,求在所有\(cut(s,t)\)中不同的值有多少个. Solution 有一个我也想不好为什么的性质:若\(s,t\)的最小割将原图划分成\(S,T\)两个集合,那么\(\forall u\in S,v\in T\),有\(cut(u,v)=cut(s,t)\).那么我们可以用分治来做. 对于一个点集\…
问题描述 BZOJ2339 本题的一些心得 对于这种无序集合计数类问题,可以通过对方案数除以某个数的阶乘,使得无序化变为有序化. 设计DP方程时候,应该先有序的列出状态转移方程每一项的来源,并一项项推导式子,可以使得做题过程更加有条理. 一个拥有良好科学素养的人,一定是有条理的 --李理 题解 对于本题,发现如果最后对答案除以 \(m!\),则可以使得集合 「有序化」 . 对于一个满足要求的方案,必须满足以下 \(3\) 个条件: 没有互相重复的集合 没有空集 集合中的每个元素都必须出现偶数次…
Loj #3044. 「ZJOI2019」Minimax 搜索 题目描述 九条可怜是一个喜欢玩游戏的女孩子.为了增强自己的游戏水平,她想要用理论的武器武装自己.这道题和著名的 Minimax 搜索有关. 可怜有一棵有根树,根节点编号为 \(1\).定义根节点的深度为 \(1\),其他节点的深度为它的父亲的深度加一.同时在叶子节点权值给定的情况下,可怜用如下方式定义了每一个非节点的权值: - 对于深度为奇数的非叶子节点,它的权值是它所有子节点的权值最大值. - 对于深度为偶数的非叶子节点,它的权值…