Freertos是一个硬实时内核,支持众多的微处理器架构,我们能够从它的官网(www.freertos.ort)下载它的sourcecode,同一时候也能够看出它支持了几十种的微处理器架构,这些就不罗嗦了.之所以选择研究这个,是应为窥探RTOS内核的内幕一直每个做底层软件开发者的心愿,选择过好几种RTOS但他们有的是须要收费,有的不太成熟也不够系统,有的尽管比較成熟可是系统太大不太适合研究.而freertos就不同了,它除了包括RTOS所须要的主要的东西之外最大的特点就是开源+简单而且支…
百篇博客系列篇.本篇为: v45.xx 鸿蒙内核源码分析(Fork篇) | 一次调用,两次返回 | 51.c.h .o 进程管理相关篇为: v02.xx 鸿蒙内核源码分析(进程管理篇) | 谁在管理内核资源 | 51.c.h .o v24.xx 鸿蒙内核源码分析(进程概念篇) | 进程在管理哪些资源 | 51.c.h .o v45.xx 鸿蒙内核源码分析(Fork篇) | 一次调用,两次返回 | 51.c.h .o v46.xx 鸿蒙内核源码分析(特殊进程篇) | 龙生龙凤生凤老鼠生儿会打洞 |…
百篇博客系列篇.本篇为: v38.xx 鸿蒙内核源码分析(寄存器篇) | 小强乃宇宙最忙存储器 | 51.c.h .o 硬件架构相关篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在哪里打卡上班 | 51.c.h .o v23.xx 鸿蒙内核源码分析(汇编传参篇) | 如何传递复杂的参数 | 51.c.h .o v36.xx 鸿蒙内核源码分析(工作模式篇) | CPU是韦小宝,七个老婆 | 51.c.h .o v38.xx 鸿蒙内核源码分析(寄存器篇) | 小强乃宇宙最忙存储器…
转载请注明本文出自大苞米的博客(http://blog.csdn.net/a396901990),谢谢支持! Android L: Google已经确认Android L就是Android Lollipop(5.0). 前几天发现Android5.0正式版的sdk已经能够下载了,并且首次搭载Android L系统的Nexus 6和 Nexus 9也即将上市. 所以是时候開始学习Android L了! 关于Android L怎样配置模拟器和创建项目,假设大家有兴趣的话能够看看我之前的一篇文章: A…
做内核驱动第一步都是学习如何添加模块,这是基础,有了这个基础,剩下就是写代码了. 由于2.4到2.6内核版本的更新,无论是系统调用还是模块添加机制都有了巨大的变化,本人也因此饱经挫折,最后在3.0.101版本的内核下成功.作为开源运动的支持者,自认为有必要把自己的经历分享出来,以供后来学习者分享与交流. 再次声明,本博客只分享我遇到了的问题,没有交流的不代表不难或者不会遇到问题,只是我没遇到,如果有阅读本博客的朋友遇到了问题,非常欢迎大家一起讨论,技术就是这么成长的! 关于添加模块,步骤上还是那…
转自:http://www.cnblogs.com/v-July-v/archive/2011/01/06/1983695.html linux0.11内核源码剖析第一篇:memory.c July  二零一一年一月六日 ----------------------------------------- 博主声明:1.本系列非linux系统教程,仅仅是针对linux0.11内核源码,所做的剖析,注释.2.本系列参考:深入理解linux内核.linux内核完全注释,linux内核源代码情景分析3.…
百篇博客系列篇.本篇为: v70.xx 鸿蒙内核源码分析(管道文件篇) | 如何降低数据流动成本 | 51.c.h.o 文件系统相关篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么说一切皆是文件 | 51.c.h.o v63.xx 鸿蒙内核源码分析(文件系统篇) | 用图书管理说文件系统 | 51.c.h.o v64.xx 鸿蒙内核源码分析(索引节点篇) | 谁是文件系统最重要的概念 | 51.c.h.o v65.xx 鸿蒙内核源码分析(挂载目录篇) | 为何文件系统需要挂载 |…
百篇博客系列篇.本篇为: v69.xx 鸿蒙内核源码分析(文件句柄篇) | 深挖应用操作文件的细节 | 51.c.h.o 文件系统相关篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么说一切皆是文件 | 51.c.h.o v63.xx 鸿蒙内核源码分析(文件系统篇) | 用图书管理说文件系统 | 51.c.h.o v64.xx 鸿蒙内核源码分析(索引节点篇) | 谁是文件系统最重要的概念 | 51.c.h.o v65.xx 鸿蒙内核源码分析(挂载目录篇) | 为何文件系统需要挂载…
子曰:"质胜文则野,文胜质则史.文质彬彬,然后君子." <论语>:雍也篇 百篇博客系列篇.本篇为: v68.xx 鸿蒙内核源码分析(VFS篇) | 文件系统和谐共处的基础 | 51.c.h.o 文件系统相关篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么说一切皆是文件 | 51.c.h.o v63.xx 鸿蒙内核源码分析(文件系统篇) | 用图书管理说文件系统 | 51.c.h.o v64.xx 鸿蒙内核源码分析(索引节点篇) | 谁是文件系统最重要的概念…
百篇博客系列篇.本篇为: v63.xx 鸿蒙内核源码分析(文件系统篇) | 用图书管理说文件系统 | 51.c.h.o 文件系统相关篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么说一切皆是文件 | 51.c.h.o v63.xx 鸿蒙内核源码分析(文件系统篇) | 用图书管理说文件系统 | 51.c.h.o v64.xx 鸿蒙内核源码分析(索引节点篇) | 谁是文件系统最重要的概念 | 51.c.h.o v65.xx 鸿蒙内核源码分析(挂载目录篇) | 为何文件系统需要挂载 |…
百篇博客系列篇.本篇为: v37.xx 鸿蒙内核源码分析(系统调用篇) | 开发者永远的口头禅 | 51.c.h .o 任务管理相关篇为: v03.xx 鸿蒙内核源码分析(时钟任务篇) | 触发调度谁的贡献最大 | 51.c.h .o v04.xx 鸿蒙内核源码分析(任务调度篇) | 任务是内核调度的单元 | 51.c.h .o v05.xx 鸿蒙内核源码分析(任务管理篇) | 任务池是如何管理的 | 51.c.h .o v06.xx 鸿蒙内核源码分析(调度队列篇) | 内核有多少个调度队列 |…
百篇博客系列篇.本篇为: v34.xx 鸿蒙内核源码分析(原子操作篇) | 谁在为原子操作保驾护航 | 51.c.h .o 本篇说清楚原子操作 读本篇之前建议先读鸿蒙内核源码分析(总目录)系列篇. 基本概念 在支持多任务的操作系统中,修改一块内存区域的数据需要"读取-修改-写入"三个步骤.然而同一内存区域的数据可能同时被多个任务访问,如果在修改数据的过程中被其他任务打断,就会造成该操作的执行结果无法预知. 使用开关中断的方法固然可以保证多任务执行结果符合预期,但这种方法显然会影响系统性…
百篇博客系列篇.本篇为: v32.xx 鸿蒙内核源码分析(CPU篇) | 整个内核就是一个死循环 | 51.c.h .o 任务管理相关篇为: v03.xx 鸿蒙内核源码分析(时钟任务篇) | 触发调度谁的贡献最大 | 51.c.h .o v04.xx 鸿蒙内核源码分析(任务调度篇) | 任务是内核调度的单元 | 51.c.h .o v05.xx 鸿蒙内核源码分析(任务管理篇) | 任务池是如何管理的 | 51.c.h .o v06.xx 鸿蒙内核源码分析(调度队列篇) | 内核有多少个调度队列…
百篇博客系列篇.本篇为: v31.xx 鸿蒙内核源码分析(定时器篇) | 哪个任务的优先级最高 | 51.c.h .o 本篇说清楚定时器的实现 读本篇之前建议先读鸿蒙内核源码分析(总目录)其余篇. 运作机制 软件定时器,是基于系统Tick时钟中断且由软件来模拟的定时器.当经过设定的Tick数后,会触发用户自定义的回调函数. 软件定时器是系统资源,在模块初始化的时候已经分配了一块连续内存. 软件定时器使用了系统的一个队列和一个任务资源,软件定时器的触发遵循队列规则,先进先出.定时时间短的定时器总是…
百篇博客系列篇.本篇为: v29.xx 鸿蒙内核源码分析(信号量篇) | 谁在负责解决任务的同步 | 51.c.h .o 进程通讯相关篇为: v26.xx 鸿蒙内核源码分析(自旋锁篇) | 自旋锁当立贞节牌坊 | 51.c.h .o v27.xx 鸿蒙内核源码分析(互斥锁篇) | 比自旋锁丰满的互斥锁 | 51.c.h .o v28.xx 鸿蒙内核源码分析(进程通讯篇) | 九种进程间通讯方式速揽 | 51.c.h .o v29.xx 鸿蒙内核源码分析(信号量篇) | 谁在负责解决任务的同步 |…
百篇博客系列篇.本篇为: v17.xx 鸿蒙内核源码分析(物理内存篇) | 怎么管理物理内存 | 51.c.h .o 内存管理相关篇为: v11.xx 鸿蒙内核源码分析(内存分配篇) | 内存有哪些分配方式 | 51.c.h .o v12.xx 鸿蒙内核源码分析(内存管理篇) | 虚拟内存全景图是怎样的 | 51.c.h .o v14.xx 鸿蒙内核源码分析(内存汇编篇) | 谁是虚拟内存实现的基础 | 51.c.h .o v15.xx 鸿蒙内核源码分析(内存映射篇) | 虚拟内存虚在哪里 |…
子曰:"见贤思齐焉,见不贤而内自省也."<论语>:里仁篇 百篇博客系列篇.本篇为: v01.xx 鸿蒙内核源码分析(双向链表篇) | 谁是内核最重要结构体 | 51.c.h .o 基础工具相关篇为: v01.xx 鸿蒙内核源码分析(双向链表篇) | 谁是内核最重要结构体 | 51.c.h .o v19.xx 鸿蒙内核源码分析(位图管理篇) | 谁能一分钱分两半花 | 51.c.h .o v20.xx 鸿蒙内核源码分析(用栈方式篇) | 程序运行场地由谁提供 | 51.c.h…
百篇博客系列篇.本篇为: v06.xx 鸿蒙内核源码分析(调度队列篇) | 内核有多少个调度队列 | 51.c.h .o 任务管理相关篇为: v03.xx 鸿蒙内核源码分析(时钟任务篇) | 触发调度谁的贡献最大 | 51.c.h .o v04.xx 鸿蒙内核源码分析(任务调度篇) | 任务是内核调度的单元 | 51.c.h .o v05.xx 鸿蒙内核源码分析(任务管理篇) | 任务池是如何管理的 | 51.c.h .o v06.xx 鸿蒙内核源码分析(调度队列篇) | 内核有多少个调度队列…
百篇博客系列篇.本篇为: v04.xx 鸿蒙内核源码分析(任务调度篇) | 任务是内核调度的单元 | 51.c.h .o 任务管理相关篇为: v03.xx 鸿蒙内核源码分析(时钟任务篇) | 触发调度谁的贡献最大 | 51.c.h .o v04.xx 鸿蒙内核源码分析(任务调度篇) | 任务是内核调度的单元 | 51.c.h .o v05.xx 鸿蒙内核源码分析(任务管理篇) | 任务池是如何管理的 | 51.c.h .o v06.xx 鸿蒙内核源码分析(调度队列篇) | 内核有多少个调度队列…
内核控制的一些功能须要移植层提供,为了方便移植.这些API函数用宏来实现,比方上下文切换.进入和退出临界区.禁止和使能可屏蔽中断.内核控制函数还包含启动和停止调度器.挂起和恢复调度器以及用于低功耗模式的调整系统节拍函数. 1.强制上下文切换宏 taskYIELD:用于强制上下文切换的宏. 在中断服务程序中的等价版本号为portYIELD_FROM_ISR.这也是个宏,事实上现取决于移植层. 用于上下文切换的实际代码由移植层提供.对于Cortex-M3硬件.这个宏会引起PendSV中断. 2.进入…
在开始具体的学习之前,你应该先了解freeRTOS的编程标准.这能够方便你在接下来的阅读中快速的了解一些内容 的基本信息,并方便记忆.此外,良好的编程风格也是工作效率的保障. 你可以在https://www.freertos.org/FreeRTOS-Coding-Standard-and-Style-Guide.html中找到英文的原文信息. 尽管此前有人翻译过这份文档,但发布时间在很早以前,一些标准已经发生了改变.这里按照此前翻译的思路根据官方文档进行了更新和修订. 编程标准(Coding…
参数 somaxconn /proc/sys/net/core/somaxconn 对于TCP连接,Client和Server连接需要三次握手来建立连接,Server端监听状态会由LISTEN切换为ESTABLISHED,此时accept函数返回.该参数就是设置连接建立之前,即三次握手完成之前,也就是accept函数返回之前,连接队列的大小的最大值.这个连接队列大小参数是由listen函数的第二个参数设置的.但会受somaxconn的限制. somaxconn参数是全局,默认为128. 可能直接…
出现这个错误的原因是相应的驱动程序没有编译进内核,所以在内核启动时,不认识分区. 一.磁盘驱动没编译进内核 VMware5.5.3 的磁盘有两种,一种是IDE的,一种是SCSI的:VMware 你在新建 linux 虚拟机时默认的是SCSI . 在5.5.3的版本中使用的是SCSI类型设备中的LSI Logic设备(据网上资料,4.0以前的版本用的是BusLogic设备). 所以我们在编译内核的时候应该把LSI Logic设备驱动程序编译进去. 现在分别介绍模块选择路径: 这个是SCSI磁盘设备…
HTTP 头域是HTTP协议中请求(request)和响应(response)中的头部信息,其实就是HTTP通信的操作参数,告诉web服务器和浏览器怎样处理这个通信.HTTP头从一个请求信息或者响应信息的第二行开始(第一行是请求行或者响应行),以两个CR-LF字符组结束(CR:回车符,\r,LF:换行符\n)而每个HTTP头是字符串形式的,用冒号分割的键值对,多个HTTP头之间用CR-LF字符组隔开. 某些http头可以有注释,例如user-agent,server,via.但这些注释会被服务器…
    虽有句话说的好,实用的东西记在脑子里.没有的记在笔记本上. 可是如今的信息量越来越大,并且随着时间的推移记忆力会越来越不可靠,所以仅仅好把近期工作之余看的一些东西记录下来,避免被迅速忘记.这里就记录一下一些NVRAM相关的东西.     NVRAM的定义就不必罗嗦了,非易失性存储器,当然这样的定义非常宽泛.我们且不一样一个去说明.这里仅仅说UEFI 里面最经常使用的狭义的NVRAM(SPI ROM里面的一块区域). 一般而论UEFI其中会用到两块区域作为NVRAM分别为NVRAM,NVR…
例子:ffmpeg -y -i "1.avi" -title "Test" -vcodec xvid -s 368x208 -r 29.97 -b 1500 -acodec aac -ac 2 -ar 24000 -ab 128 -vol 200 -f psp -muxvb 768 "output.wmv" 解释:以上命令可以在Dos命令行中输入,也可以创建到批处理文件中运行.不过,前提是:要在ffmpeg所在的目录中执行(转换君所在目录下面的c…
    ACPI IGD OpRegion interface是用SCI来实现IGD driver,OS,BIOS之间沟通的桥梁,IGD OpRegion PROTOCOL是UEFI BIOS构建桥梁的脊梁. Legacy的实现方式下与OS沟通的方式: OpRegion Memory Layout: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvQ1N0eWxlXzB4MDA3/font/5a6L5L2T/fontsize/400/fill/I0JBQ…
为什么说do while(0) 妙?因为它的确就是妙,而且在linux内核中实现是相当的妙,我们来看看内核中的相关代码: #define db_error(fmt, ...) \ do { \ fprintf(stderr, "(error): "); \ fprintf(stderr, fmt, ##__VA_ARGS__); \ } while (0) 这只是个普通的调试信息的输出,有人便会认为,你这不是多此一举吗?去掉do while(0)不一样也实现了吗?其实不然,我们看看例子…
看到HorkeyChen写的文章<[WebKit] JavaScriptCore解析--基础篇(三)从脚本代码到JIT编译的代码实现>,写的很好,深受启发.想补充一些Horkey没有写到的细节比如字节码是如何生成的等等,为此成文. JSC对JavaScript的处理,其实与Webkit对CSS的处理许多地方是类似的,它这么几个部分: (1)词法分析->出来词语(Token): (2)语法分析->出来抽象语法树(AST:Abstract Syntax Tree): (3)遍历抽象语法…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 随着Spark的逐渐成熟完好, 越来越多的可配置參数被加入到Spark中来, 本文试图通过阐述这当中部分參数的工作原理和配置思路, 和大家一起探讨一下怎样依据实际场合对Spark进行配置优化. 因为篇幅较长.所以在这里分篇组织,假设要看最新完整的网页版内容.能够戳这里:http://spark-config.readthedoc…