声明:以下内容根据潘的博客和crackcell's dustbin进行整理,尊重原著,向两位作者致谢! 1 现有的排序模型 排序(Ranking)一直是信息检索的核心研究问题,有大量的成熟的方法,主要可以分为以下两类:相关度排序模型和重要性排序模型. 1.1 相关度排序模型(Relevance Ranking Model) 相关度排序模型根据查询和文档之间的相似度来对文档进行排序.常用的模型包括:布尔模型(Boolean Model),向量空间模型(Vector Space Model),隐语义…
排序一直是信息检索的核心问题之一, Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank简介).LTR有三种主要的方法:PointWise,PairWise,ListWise. RankNet是一种Pairwise方法, 由微软研究院的Chris Burges等人在2005年ICML上的一篇论文Learning to Rank Using Gradient Descent中提出,并被应…
Machine Learning读书会,面试&算法讲座,算法公开课,创业活动,算法班集锦 近期活动: 2014年9月3日,第8次西安面试&算法讲座视频 + PPT 的下载地址:http://blog.csdn.net/v_july_v/article/details/7237351#t40: 2014年10月18日,北京10月机器学习班开班,全部PPT 的下载地址见:http://blog.csdn.net/v_july_v/article/details/7237351#t63: 201…
之前的博客:http://www.cnblogs.com/bentuwuying/p/6681943.html中简单介绍了Learning to Rank的基本原理,也讲到了Learning to Rank的几类常用的方法:pointwise,pairwise,listwise.前面已经介绍了pairwise方法中的 RankSVM,IR SVM,和GBRank.这篇博客主要是介绍另外三种相互之间有联系的pairwise的方法:RankNet,LambdaRank,和LambdaMart. 1.…
之前的博客:http://www.cnblogs.com/bentuwuying/p/6681943.html中简单介绍了Learning to Rank的基本原理,也讲到了Learning to Rank的几类常用的方法:pointwise,pairwise,listwise.前面已经介绍了pairwise方法中的 RankSVM,IR SVM,和GBRank.这篇博客主要是介绍另外三种相互之间有联系的pairwise的方法:RankNet,LambdaRank,和LambdaMart. 1.…
最近开始看Elements of Statistical Learning, 今天的内容是线性模型(第三章..这本书东西非常多,不知道何年何月才能读完了),主要是在看变量选择.感觉变量选择这一块领域非常有意思,而大三那门回归分析只是学了一些皮毛而已.过两天有空,记一些ESL这本书里讲的各种变量选择方法在这里. 先讲一下今天看到的新方法,所谓的LARS(Least Angle Regression). LARS是大神Efron他们搞出来做变量选择的一套算法,有点像Forward Stepwise(…
机器学习常见算法简介 - 原文链接:http://usblogs.pwc.com/emerging-technology/machine-learning-methods-infographic/ 应该使用哪种机器学习算法? 很大程度上依赖于可用数据的性质和数量以及每一个特定用例中你的训练目标. 不要使用最复杂的算法,除非其结果值得付出昂贵的开销和资源. 这里给出了一些最常见的算法,按使用简单程度排序. 1. 决策树(DT,Decision Trees) 在进行逐步应答过程中,典型的决策树分析会…
Meta Learning/ Learning to Learn/ One Shot Learning/ Lifelong Learning 2018-08-03 19:16:56 本文转自:https://github.com/floodsung/Meta-Learning-Papers 1 Legacy Papers [1] Nicolas Schweighofer and Kenji Doya. Meta-learning in reinforcement learning. Neural…
Learning to Learn Chelsea Finn    Jul 18, 2017 A key aspect of intelligence is versatility – the capability of doing many different things. Current AI systems excel at mastering a single skill, such as Go, Jeopardy, or even helicopter aerobatics. But…
有两篇文章一篇讲解(下面copy)< PageRank算法简介及Map-Reduce实现>来源:http://www.cnblogs.com/fengfenggirl/p/pagerank-introduction.html 另一篇<PageRank简介-串讲Q&A.docx> http://docs.babel.baidu.com/doc/ee14bd65-ba71-4ebb-945b-cf279717233b PageRank对网页排名的算法,曾是Google发家致富的…