一. 容错机制 1.背景 要理解Spark Streaming提供的容错机制,先回忆一下Spark RDD的基础容错语义: 1.RDD,Ressilient Distributed Dataset,是不可变的.确定的.可重新计算的.分布式的数据集.每个RDD都会记住确定好的计算操作的血缘关系, (val lines = sc.textFile(hdfs file); val words = lines.flatMap(); val pairs = words.map(); val wordCou…
1 解密Spark Streaming运行机制 上节课我们谈到了技术界的寻龙点穴.这就像过去的风水一样,每个领域都有自己的龙脉,Spark就是龙脉之所在,它的龙穴或者关键点就是SparkStreaming.这是上一节课我们非常清晰知道的结论之一.而且上一节课,我们采用了降维的方式.所谓降维的方式,是指把时间放大,就是把时间变长的情况下,我们做SparkStreaming的案例演示的实战,实战的结果是,我们发现在特定的时间段里面,确实是具体的RDD在工作,那么这一节课有必要在上一节课的基础上去谈一…
Spark Streaming容错 检查点机制-checkpoint 什么是检查点机制? Spark Streaming 周期性地把应用数据存储到诸如HDFS 或Amazon S3 这样的可靠存储系统中以供恢复时使用的机制叫做检查点机制 检查点机制的作用 控制发生失败时需要重算的状态数 Spark Streaming通过lineage重算,检查点机制则可以控制需要在lineage中回溯多远 提供驱动器程序容错 如果流计算应用中的驱动器程序崩溃了,你可以重启驱动器程序,并让驱动器程序从检查点恢复,…
本文来自Spark Streaming项目带头人 Tathagata Das的博客文章,他现在就职于Databricks公司.过去曾在UC Berkeley的AMPLab实验室进行大数据和Spark Streaming的研究工作.本文主要谈及了Spark Streaming容错的改进和零数据丢失. 以下为原文: 实时流处理系统必须要能在24/7时间内工作,因此它需要具备从各种系统故障中恢复过来的能力.最开始,Spark Streaming就支持从driver和worker故障恢复的能力.然而有些…
本期内容: 1. Spark Streaming Job架构与运行机制 2. Spark Streaming 容错架构与运行机制 事实上时间是不存在的,是由人的感官系统感觉时间的存在而已,是一种虚幻的存在,任何时候宇宙中的事情一直在发生着的. Spark Streaming好比时间,一直遵循其运行机制和架构在不停的在运行,无论你写多或者少的应用程序都跳不出这个范围. import org.apache.spark.SparkConf import org.apache.spark.streami…
本期内容: 1. Spark Streaming架构 2. Spark Streaming运行机制 Spark大数据分析框架的核心部件: spark Core.spark  Streaming流计算.GraphX图计算.MLlib机器学习.Spark SQL.Tachyon文件系统.SparkR计算引擎等主要部件. Spark Streaming 其实是构建在spark core之上的一个应用程序,要构建一个强大的Spark应用程序 ,spark  Streaming是一个值得借鉴的参考,spa…
第1章 Spark Streaming 概述1.1 什么是 Spark Streaming1.2 为什么要学习 Spark Streaming1.3 Spark 与 Storm 的对比第2章 运行 Spark Streaming第3章 架构与抽象第4章 Spark Streaming 解析4.1 初始化 StreamingContext4.2 什么是 DStreams4.3 DStream 的输入4.3.1 基本数据源4.3.2 高级数据源4.4 DStream 的转换4.4.1 无状态转化操作…
Spark 定制版:004~Spark Streaming事务处理彻底掌握 本讲内容: a. Exactly Once b. 输出不重复 注:本讲内容基于Spark 1.6.1版本(在2016年5月来说是Spark最新版本)讲解. 上节回顾: 上节课通过案例透视了Spark Streaming Job架构和运行机,并结合源码进行了详细解说:同时也了解了Spark Streaming Job的容错机制,包括 Executor 与 Driver两方面的容错机制. 也就是说Job的事务处理,主要是在E…
首先,我们必须知道什么是事务及其一致性? 事务应该具有4个属性:原子性.一致性.隔离性.持久性.这四个属性通常称为ACID特性. 原子性(atomicity).一个事务是一个不可分割的工作单位,事务中包括的诸操作要么都做,要么都不做. 一致性(consistency).事务必须是使数据库从一个一致性状态变到另一个一致性状态.一致性与原子性是密切相关的. 隔离性(isolation).一个事务的执行不能被其他事务干扰.即一个事务内部的操作及使用的数据对并发的其他事务是隔离的,并发执行的各个事务之间…
4.1 初始化StreamingContext import org.apache.spark._ import org.apache.spark.streaming._ val conf = new SparkConf().setAppName(appName).setMaster(master) val ssc = new StreamingContext(conf, Seconds(1)) // 可以通过 ssc.sparkContext 来访问 SparkContext // 或者通过已…