Spark学习(一)——Spark运行架构】的更多相关文章

Spark学习之Spark Streaming(9) 1. Spark Streaming允许用户使用一套和批处理非常接近的API来编写流式计算应用,这就可以大量重用批处理应用的技术甚至代码. 2. Spark Streaming使用离散化(discretized steam)作为抽象表示,叫做DStream.DStream是随时间推移而收到的数据的序列. 3. DSteam支持两种操作:转换操作(transformation),会生成一个新的DStream:另一种是输出操作(output op…
Spark学习之Spark调优与调试(7) 1. 对Spark进行调优与调试通常需要修改Spark应用运行时配置的选项. 当创建一个SparkContext时就会创建一个SparkConf实例. 2. Spark特定的优先级顺序来选择实际配置: 优先级最高的是在用户代码中显示调用set()方法设置选项: 其次是通过spark-submit传递的参数: 再次是写在配置文件里的值: 最后是系统的默认值. 3.查看应用进度信息和性能指标有两种方式:网页用户界面.驱动器和执行器进程生成的日志文件. 4.…
Spark学习之Spark SQL(8) 1. Spark用来操作结构化和半结构化数据的接口--Spark SQL. 2. Spark SQL的三大功能 2.1 Spark SQL可以从各种结构化数据(例如JSON.Hive.Parquet等)中读取数据. 2.2 Spark SQL不仅支持在Spark程序内使用SQL语句进行查询,也支持从类似商业智能软件Tableau这样的外部工具中通过标准数据库连接器(JDBC/ODBC)连接Spark SQL进行查询. 2.3 当在Spark程序内使用Sp…
IDE:eclipse Spark:spark-1.1.0-bin-hadoop2.4 scala:2.10.4 创建scala工程,编写wordcount程序如下 package com.luogankun.spark.base import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org.apache.spark.SparkContext._ /** * 统计字符出现次数 */ object…
一.简介 许多应用需要即时处理收到的数据,例如用来实时追踪页面访问统计的应用.训练机器学习模型的应用,还有自动检测异常的应用.Spark Streaming 是 Spark 为这些应用而设计的模型.它允许用户使用一套和批处理非常接近的 API 来编写流式计算应用,这样就可以大量重用批处理应用的技术甚至代码. 和 Spark 基于 RDD 的概念很相似,Spark Streaming 使用离散化流(discretized stream)作为抽象表示,叫作 DStream.DStream 是随时间推…
1.1 什么是Spark ​ Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎. ​ 一站式管理大数据的所有场景(批处理,流处理,sql) ​ spark不涉及到数据的存储,只做数据的计算 ​ Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行计算框架,Spark拥有Hadoop MapReduce所具有的优点: ​ 但不同于MapReduce的是Job中间输出结果可以保存在内存中,…
下面来看看更复杂的情况,比如,当调度器进行流水线执行(pipelining),或把多个 RDD 合并到一个步骤中时.当RDD 不需要混洗数据就可以从父节点计算出来时,调度器就会自动进行流水线执行.上一篇博文结尾处输出的谱系图使用不同缩进等级来展示 RDD 是否会在物理步骤中进行流水线执行.在物理执行时,执行计划输出的缩进等级与其父节点相同的 RDD 会与其父节点在同一个步骤中进行流水线执行.例如,当计算 counts 时,尽管有很多级父 RDD,但从缩进来看总共只有两级.这表明物理执行只需要两个…
一.使用SparkConf配置Spark 对 Spark 进行性能调优,通常就是修改 Spark 应用的运行时配置选项.Spark 中最主要的配置机制是通过 SparkConf 类对 Spark 进行配置.当创建出一个 SparkContext 时,就需要创建出一个 SparkConf 的实例. import org.apache.spark.SparkContext import org.apache.spark.SparkConf object Test { def main(args: A…
Spark安装 spark运行环境 spark是Scala写的,运行在jvm上,运行环境为java7+ 如果使用Python的API ,需要使用Python2.6+或者Python3.4+ Spark1.6.2  -  Scala 2.10    Spark 2.0.0  -  Scala  2.11 Spark下载 下载地址:http://spark.apache.org/downloads.html 搭建spark,不需要Hadoop,如有Hadoop集群,可下载对应版本解压 Spark目录…
许多应用需要即时处理收到的数据,例如用来实时追踪页面访问统计的应用.训练机器学习模型的应用, 还有自动检测异常的应用.Spark Streaming 是 Spark 为这些应用而设计的模型.它允许用户使用一套和批处理非常接近的 API 来编写流式计算应用,这样就可以大量重用批处理应用的技术甚至代码. Spark Streaming 使用离散化流( discretized stream)作为抽象表示, 叫作 DStream. DStream 是随时间推移而收到的数据的序列.在内部,每个时间区间收到…