转载于:http://www.cnblogs.com/767355675hutaishi/p/3873770.html 题目大意:众所周知冒泡排序算法多数情况下不能只扫描一遍就结束排序,而是要扫描好几遍.现在你的任务是求1~N的排列中,需要扫描K遍才能排好序的数列的个数模20100713.注意,不同于真正的冒泡排序算法,只要数列有序就立刻停止,而不用再检验一遍. 估计多数人都是找规律吧,先看出递推,然后求出通项……这个题只有找出通项公式才能通过,所以首先公布答案: K!((K + 1) ^ (N…
点我看题目 题意 : 冒泡排序的原理众所周知,需要扫描很多遍.而现在是求1到n的各种排列中,需要扫描k遍就变为有序的数列的个数,结果模20100713,当然了,只要数列有序就扫描结束,不需要像真正的冒泡排序要扫描n-1遍. 思路 : 这个题的结果是K!((K + 1) ^ (N - K) - K ^ (N - K)).需要用到逆序数,此题具体推导. //POJ 3761 #include <iostream> #include <stdio.h> #include <stri…
题意:问你冒泡排序第i次排序,一共排了多少次 套公式K!((K + 1) ^ (N - K) - K ^ (N - K)) #include <iostream> #include<cstdio> #include<cstring> using namespace std; #define LL long long #define N 1000010 #define M 20100713 LL a[N]; int _pow(LL v,int k){ LL res=1;…
题目传送门 /* 题意:求冒泡排序扫描k次能排好序的全排列个数 数学:这里有一个反序列表的概念,bj表示在j左边,但大于j的个数.不多说了,我也是看网上的解题报告. 详细解释:http://blog.csdn.net/cscj2010/article/details/7820906 */ #include <cstdio> #include <algorithm> #include <cstring> #include <cmath> using names…
http://poj.org/problem?id=1995 以这道题来分析一下快速幂取模 a^b%c(这就是著名的RSA公钥的加密方法),当a,b很大时,直接求解这个问题不太可能 利用公式a*b%c=((a%c)*b)%c 每一步都进行这种处理,这就解决了a^b可能太大存不下的问题,但这个算法的时间复杂度依然没有得到优化 由此可以用快速幂算法优化: http://www.cnblogs.com/qlky/p/5020402.html 再结合取模公式: (a + b) % p = (a % p…
Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 20309   Accepted: 8524 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The input contains exactly one test cas…
传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有且只有一种方式写出其素因子的乘积表达式. ,其中为素数 2) 约数和公式: 对于已经分解的整数,A的所有因子之和为 3) 同余模公式: (a+b)%m=(a%m+b%m)%m (a*b)%m=(a%m*b%m)%m 1: 对A进行素因子分解 这里如果先进行筛50000内的素数会爆空间,只能用最朴素的…
(转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速幂,实际上是快速幂取模的缩写,简单的说,就是快速的求一个幂式的模(余).在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快.计算范围更大的算法,产生了快速幂取模算法.我们先从简单的例子入手:求abmodc 算法1.直接设计这个算法: ; ;i<=b;i++) { ans = ans…
HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围,即使是long long也无法存储. 因此需要利用 (a*b)%c = (a%c)*(b%c)%c,一直乘下去,即 (a^n)%c = ((a%c)^n)%c; 即每次都对结果取模一次 此外,此题直接使用朴素的O(n)算法会超时,因此需要优化时间复杂度: 一是利用分治法的思想,先算出t = a^(n/2),若…
题意: 斐波那契数列f(0) = 0, f(1) = 1, f(n+2) = f(n+1) + f(n) (n ≥ 0) 输入a.b.n,求f(ab)%n 分析: 构造一个新数列F(i) = f(i) % n,则所求为F(ab) 如果新数列中相邻两项重复出现的话,则根据递推关系这个数列是循环的. 相邻两项所有可能组合最多就n2中,所以根据抽屉原理得到这个数列一定是循环的. 求出数列的周期,然后快速幂取模即可. #include <cstdio> #include <iostream>…