题目链接:http://lightoj.com/volume_showproblem.php?problem=1090 题意:给你四个数 n, r, p, q 求C(n, r) * p^q的结果中末尾0的个数;(1<=n, r, p, q <= 10^6, r ≤ n) 要求末尾0的个数,一定和2和5有关,例如num1 * num2结果中末尾0的个数可以表示成min(num1中2的个数+num2中2的个数, num1中5的个数+num2中5的个数); 对于C(n, r)中0的2的个数可以写成f…
题目链接:http://lightoj.com/volume_showproblem.php?problem=1138 题意:给你一个数n,然后找个一个最小的数x,使得x!的末尾有n个0:如果没有输出impossible 可以用二分求结果,重点是求一个数的阶乘中末尾含有0的个数,一定和因子5和2的个数有关,因子为2的明显比5多,所以我们只需要求一个数的阶乘的因子中一共有多少个5即可; LL Find(LL x) { LL ans = ; while(x) { ans += x/; x /= ;…
题目连接: http://www.lightoj.com/volume_showproblem.php?problem=1090 题目大意: 给出n,r,p,q四个数字1<=n,r,p,q<=1000000,求出的末尾有几个0? 解题思路: 是不是一下子懵了,数字好大,复杂度好高,精度怎么办···············,就问你怕不怕? 其实都是纸老虎啦,因为10的因子只有2和5,所以可以打表保存从1到当前数字相乘的积中分别含有2,5的个数.然后算出中分别含有2,5的个数,取其最小就是结果.(…
Given an integer n, return the number of trailing zeroes in n!. Example 1: Input: 3 Output: 0 Explanation: 3! = 6, no trailing zero. Example 2: Input: 5 Output: 1 Explanation: 5! = 120, one trailing zero. 考虑n!的质数因子.后缀0总是由质因子2和质因子5相乘得来的.如果我们可以计数2和5的个数…
题目 Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. 分析 Note中提示让用对数的时间复杂度求解,那么如果粗暴的算出N的阶乘然后看末尾0的个数是不可能的. 所以仔细分析,N! = 1 * 2 * 3 * ... * N 而末尾0的个数只与这些乘数中5和2的个数有关,因为每出现一对5和2就会产生…
Factorial Time Limit: 1500MS   Memory Limit: 65536K Total Submissions: 15137   Accepted: 9349 Description The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term…
求阶乘末尾0的个数 (1)给定一个整数N,那么N的阶乘N!末尾有多少个0?比如:N=10,N!=3628800,N!的末尾有2个0. (2)求N!的二进制表示中最低位为1的位置. 第一题 考虑哪些数相乘能得到10,N!= K * 10M其中K不能被10整除,则N!末尾有M个0. 对N!进行质因数分解: N!=2X*3Y*5Z…,因为10=2*5,所以M与2和5的个数即X.Z有关.每一对2和5都可以得到10,故M=min(X,Z).因为能被2整除的数出现的频率要比能被5整除的数出现的频率高,所以M…
求N的阶乘N!中末尾0的个数 有道问题是这样的:给定一个正整数N,那么N的阶乘N!末尾中有多少个0呢?例如:N=10,N=3628800,则N!的末尾有两个0:直接上干货,算法思想如下:对于任意一个正整数N!,都可以化为N!= (2^X)*(3^Y)* (5^Z)......的形式,要求得末尾0的个数只需求得min(X, Z)即可,由于是求N!,则X >= Z; 即公约数5出现的频率小于等于2出现的频率,即Z=min(X, Z),即出现0的个数等于公约数5出现的次数: 方法一: #include…
题目链接:http://lightoj.com/volume_showproblem.php? problem=1138 题意:问 N. 末尾 0 的个数为 Q 个的数是什么? 解法:二分枚举N,由于0是由5×2 出现的,2的个数比5多故计算5的个数就可以. 代码: #include <stdio.h> #include <ctime> #include <math.h> #include <limits.h> #include <complex>…
链接:https://www.nowcoder.com/acm/contest/135/C来源:牛客网 题目描述 其中,f(1)=1;f(2)=1;Z皇后的方案数:即在Z×Z的棋盘上放置Z个皇后,使其互不攻击的方案数. 输入描述: 输入数据共一行,两个正整数x,m,意义如“题目描述”. 输出描述: 一个正整数k,表示输出结尾0 的个数或者放置皇后的方案数 输入例子: 375 16 输出例子: 14200 --> 示例1 输入 复制 375 16 输出 复制 14200 说明    鸣谢真·dal…