主讲人 planktonli planktonli(1027753147) 18:58:12  大家好,我负责给大家讲讲 PRML的第3讲 linear regression的内容,请大家多多指教,群主让我们每个主讲人介绍下自己,赫赫,我也说两句,我是 applied mathematics + computer science的,有问题大家可以直接指出,互相学习.大家有兴趣的话可以看看我的博客: http://t.qq.com/keepuphero/mine,当然我给大家推荐一个好朋友的,他对…
主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以及它和最小二乘分类的关系 (Fisher分类是最小二乘分类的特例)2) 概率生成模型的分类模型3) 概率判别模型的分类模型4) 全贝叶斯概率的Laplace近似 需要注意的是,有三种形式的贝叶斯:1) 全贝叶斯2) 经验贝叶斯3) MAP贝叶斯我们大家熟知的是 MAP贝叶斯 MAP(poor man…
主讲人 网络上的尼采 (新浪微博:@Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:16:05 今天的主要内容:Kernel的基本知识,高斯过程.边思考边打字,有点慢,各位稍安勿躁. 机器学习里面对待训练数据有的是训练完得到参数后就可以抛弃了,比如神经网络:有的是还需要原来的训练数据比如KNN,SVM也需要保留一部分数据--支持向量.很多线性参数模型都可以通过dual representation的形式表达为核函数的形式.所谓线性参数模型是通过非线性的基函数的线性…
贝叶斯线性回归(Bayesian Linear Regression) 2016年06月21日 09:50:40 Duanxx 阅读数 54254更多 分类专栏: 监督学习   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/daunxx/article/details/51725086 贝叶斯线性回归(Bayesian Linear Regression) 标签(空格分隔): 监督学习…
主讲人 张巍 (新浪微博: @张巍_ISCAS) 软件所-张巍<zh3f@qq.com> 19:01:27 我们开始吧,十三章是关于序列数据,现实中很多数据是有前后关系的,例如语音或者DNA序列,例子就不多举了,对于这类数据我们很自然会想到用马尔科夫链来建模: 例如直接假设观测数据之间服从一阶马尔科夫链,这个假设显然太简单了,因为很多数据时明显有高阶相关性的,一个解决方法是用高阶马尔科夫链建模: 但这样并不能完全解决问题 :1.高阶马尔科夫模型参数太多:2.数据间的相关性仍然受阶数限制.一个好…
主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:59:22  大家好,今天一起交流下PRML第7章.第六章核函数里提到,有一类机器学习算法,不是对参数做点估计或求其分布,而是保留训练样本,在预测阶段,计算待预测样本跟训练样本的相似性来做预测,例如KNN方法. 将线性模型转换成对偶形式,就可以利用核函数来计算相似性,同时避免了直接做高维度的向量内积运算.本章是稀疏向量机,同样基于核函数,用训练样本直接对新样本做预测,而且只使用了少量训练样本,所以具有稀疏性,叫sp…
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00  今天的主要内容:Markov Chain Monte Carlo,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hybrid Monte Carlo. 上一章讲到的平均场是统计物理学中常用的一种思想,将无法处理的复杂多体问题分解成可以处理的单体问题来近似,变分推断便是在平均场的假设约束下求泛函L(Q)极值的最优化…
主讲人 网神 (新浪微博:@豆角茄子麻酱凉面) 网神(66707180) 18:55:06 那我们开始了啊,前面第3,4章讲了回归和分类问题,他们应用的主要限制是维度灾难问题.今天的第5章神经网络的内容:1. 神经网络的定义2. 训练方法:error函数,梯度下降,后向传导3. 正则化:几种主要方法,重点讲卷积网络 书上提到的这些内容今天先不讲了,以后有时间再讲:BP在Jacobian和Hessian矩阵中求导的应用:混合密度网络:贝叶斯解释神经网络. 首先是神经网络的定义,先看一个最简单的神经…
二分类:Logistic regression 多分类:Softmax分类函数 对于损失函数,我们求其最小值, 对于似然函数,我们求其最大值. Logistic是loss function,即: 在逻辑回归中,选择了 “对数似然损失函数”,L(Y,P(Y|X)) = -logP(Y|X). 对似然函数求最大值,其实就是对对数似然损失函数求最小值. Logistic regression, despite its name, is a linear model for classification…
Linear Basis Function Models 线性模型的一个关键属性是它是参数的一个线性函数,形式如下: w是参数,x可以是原始的数据,也可以是关于原始数据的一个函数值,这个函数就叫basis function,记作φ(x),于是线性模型可以表示成: w0看着难受,定义一个函数φ0(x) = 1, 模型的形式再一次简化成: 以上就是线性模型的一般形式.basis function有很多选择,例如Gaussian.sigmoid.tanh (tanh(x) = 2 * sigmoid(…