python 生成器的理解和总结】的更多相关文章

1. 生成器 利用迭代器,我们可以在每次迭代获取数据(通过next()方法)时按照特定的规律进行生成.但是我们在实现一个迭代器时,关于当前迭代到的状态需要我们自己记录,进而才能根据当前状态生成下一个数据.为了达到记录当前状态,并配合next()函数进行迭代使用,我们可以采用更简便的语法,即生成器(generator).生成器是一类特殊的迭代器. 2. 创建生成器方法1 要创建一个生成器,有很多种方法.第一种方法很简单,只要把一个列表生成式的 [ ] 改成 ( ) 3. 创建生成器方法2 gene…
python——生成器 通过列表生成式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯定是有限的.而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了. 所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间.在Python中,这种一边循环一边计算的机制,称为生成器:generator. 要创建一个generat…
Windows 10家庭中文版,Python 3.6.4, 上午看过了一篇讲Python生成器的博文: 提高你的Python: 解释‘yield’和‘Generators(生成器)’(英文原文) 这篇博文讲的挺好的,但在读完后,自己仍然对yield.send.yield返回值等概念不清楚,于是,做了两个小试验. 试验一:yield语句的返回值 def xyz(): print('xyz 0') while True: print('xyz 1') data = yield 2 print('xy…
作为脚本,python具备了弱类型语言的灵活性,便捷性.这在日常的开发使用中能够大幅度的减轻开发人员的编码负担,开发者也能够将精力集中在程序的逻辑管理和总体构架设计上.一般而言,随着经验的积累,开发人员都能使用python写出漂亮的代码,简洁而美观. python也是严谨的,从对各类预定义错误的设定我们就可以发现python具备着编译语言具备的严密的逻辑结构.可以这么讲,随着对python的深入理解,就越能感受到python在提供各类便捷操作的同时依然保持了编译语言具有的严密逻辑,只是很多"隐藏…
多线程和多进程是什么自行google补脑 对于python 多线程的理解,我花了很长时间,搜索的大部份文章都不够通俗易懂.所以,这里力图用简单的例子,让你对多线程有个初步的认识. 单线程 在好些年前的MS-DOS时代,操作系统处理问题都是单任务的,我想做听音乐和看电影两件事儿,那么一定要先排一下顺序. (好吧!我们不纠结在DOS时代是否有听音乐和看影的应用.^_^) from time import ctime,sleep def music(): for i in range(2): prin…
#!/usr/bin/python class Person: '''some words content or descriptions!''' name='luomingchuan' _age = 18 __mail = 'gordon.tongji' def __init__(self): self.normal = 'normal' self._single = 'single' self.__double = 'double' def print_self(self): print '…
小学生都能学会的python(生成器) 1. 生成器 生成器的本质就是迭代器. 生成器由生成器函数来创建或者通过生成器表达式来创建 # def func(): # lst = [] # for i in range(10000): # lst.append("衣服%s" % i) # return lst # lst = func() # print(lst) # def func(): # for i in range(1, 10000): # yield "衣服%s&qu…
python 生成器 & 迭代器 生成器 (generator) 列表生成式 列表生成式用来生成一个列表,虽然写的是表达式,但是储存的是计算出来的结果,因此生成的列表受到内存大小的限制 示例: a = [x ** 2 for x in range(5)] print(a) 输出结果: [0, 1, 4, 9, 16] 生成器 (generator) 生成器同样可以用来生成一个列表,但是生成器保存的是算法,在每一次调用 next 时才会计算出结果,因此生成的列表不会受到内存大小的限制 示例: a…
python生成器学习: 案例分析一: def demo(): for i in range(4): yield i g=demo() g1=(i for i in g) #(i for i in demo()) g2=(i for i in g1) #(i for i in (i for i in demo())) ---> print(list(g1)) #list((i for i in demo())) #执行后 list((0,1,2,3)) --->[0,1,2,3] print(…
一.python生成器 python生成器原理: 只要函数中存在yield,则函数就变为生成器函数 #!usr/bin/env python # -*- coding:utf-8 -*- def xrange(): ') yield 1 ') yield 2 ') yield 3 r = xrange() #不执行,产生一个生成器 print(r) #<generator object f1 at 0x0000017D4A1D1CA8> re = r.__next__() print(re)…