Cross Entropy in Machine Learning】的更多相关文章

整理摘自:https://blog.csdn.net/tsyccnh/article/details/79163834 信息论 Outline 1. 信息量与信息熵 2. 相对熵(KL散度) 3. 交叉熵 -------------------------------- 1. 信息量与信息熵 https://baike.baidu.com/item/%E4%BF%A1%E6%81%AF%E7%86%B5/7302318?fr=aladdin 信息论之父 C. E. Shannon 在 1948…
Machine Learning Methods: Decision trees and forests This post contains our crib notes on the basics of decision trees and forests. We first discuss the construction of individual trees, and then introduce random and boosted forests. We also discuss…
Machine Learning Crash Course  |  Google Developers https://developers.google.com/machine-learning/crash-course/ Google's fast-paced, practical introduction to machine learning ML Concepts Introduction to Machine Learning As you'll discover, machine…
一.Training of a Single-Layer Neural Network 1 Delta Rule Consider a single-layer neural network, as shown in Figure 2-11. In the figure, d i is the correct output of the output node i. Long story short, the delta rule adjusts the weight as the follow…
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics for machine learning? Promoted by Time Doctor Software for productivity tracking. Time tracking and productivity improvement software with screenshots…
今天和大家分享coursera-NTU-機器學習基石(Machine Learning Foundations)-作业三的习题解答.笔者在做这些题目时遇到非常多困难,当我在网上寻找答案时却找不到,而林老师又不提供答案,所以我就想把自己做题时对题目怎样思考的写下来,为大家提供一些思路.当然,我对题目的理解不一定是正确的,假设各位博友发现错误请及时留言联系.谢谢!再次提醒:请不要以此博客作为通过考试的用途,还是更好学习.理解课程的途径! 希望我的博客对您的学习有所帮助! 本文出处:http://bl…
1.说在前面 最近在学习object detection的论文,又遇到交叉熵.高斯混合模型等之类的知识,发现自己没有搞明白这些概念,也从来没有认真总结归纳过,所以觉得自己应该沉下心,对以前的知识做一个回顾与总结,特此先简单倒腾了一下博客,使之美观一些,再进行总结.本篇博客先是对交叉熵损失函数进行一个简单的总结. 2. 交叉熵的来源 2.1.信息量 交叉熵是信息论中的一个概念,要想了解交叉熵的本质,需要先从最基本的概念讲起.我们先来看看什么是信息量: 事件A:巴西队进入了2018世界杯决赛圈. 事…
逻辑回归(Logistic Regression)是一种经典的线性分类算法.逻辑回归虽然叫回归,但是其模型是用来分类的. 让我们先从最简单的二分类问题开始.给定特征向量x=([x1,x2,...,xn])T以及每个特征的权重w=([w1,w2,...,wn])T,阈值为b,目标y是两个分类标签---1和-1.为了便于叙述,把b并入权重向量w,记作,特征向量则扩充为.(为了简便的缘故,下面还是都写成w和x) 事实上,我们已经学习过一种分类算法了.在<机器学习---感知机(Machine Learn…
决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…