题目背景 此题约为NOIP提高组Day2T1难度. 题目描述 在n*n的格子上有m个地毯. 给出这些地毯的信息,问每个点被多少个地毯覆盖. 输入输出格式 输入格式: 第一行,两个正整数n.m.意义如题所述. 接下来m行,每行两个坐标(x1,y1)和(x2,y2),代表一块地毯,左上角是(x1,y1),右下角是(x2,y2). 输出格式: 输出n行,每行n个正整数. 第i行第j列的正整数表示(i,j)这个格子被多少个地毯覆盖. 输入输出样例 输入样例#1: 5 3 2 2 3 3 3 3 5 5…
P3397 地毯 题目背景 此题约为NOIP提高组Day2T1难度. 题目描述 在n*n的格子上有m个地毯. 给出这些地毯的信息,问每个点被多少个地毯覆盖. 输入输出格式 输入格式: 第一行,两个正整数n.m.意义如题所述. 接下来m行,每行两个坐标(x1,y1)和(x2,y2),代表一块地毯,左上角是(x1,y1),右下角是(x2,y2). 输出格式: 输出n行,每行n个正整数. 第i行第j列的正整数表示(i,j)这个格子被多少个地毯覆盖. 输入输出样例 输入样例#1: 5 3 2 2 3 3…
洛谷1387的进阶版,但很像. 1387要求是“全为1的正方形”,取dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1]))吧?这个有“只有对角线可以有1”的要求,取的是dp[i][j] = min(dp[i-1][j-1], min(s1[i-1][j], s2[i][j-1])),s1s2是预处理的两个数组,表示上方和左方有多少连续的0.另外本题左右方向对角线都算,所以得算两遍. #include <cstdio> #include…
题目描述 辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师.为此,他想拜附近最有威望的医师为师.医师为了判断他的资质,给他出了一个难题.医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值.我会给你一段时间,在这段时间里,你可以采到一些草药.如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大.” 如果你是辰辰,你能完成这个任务吗? 输入格式 第一行有 22 个整数 TT(1 \le T \le 10001≤…
二维平面上的差分,我们可以对每行处理. 比如我们要把(2,2)(5,5)之间的矩形加上1,可以这样处理. 0 0 0 0 0 0 0 +1 0 0 0 -1 0 +1 0 0 0 -1 0 +1 0 0 0 -1 0 +1 0 0 0 -1 0 0 0 0 0 0 那么这道题就简单了. 1 #include<bits/stdc++.h> 2 using namespace std; 3 int n,m,a[1001][1001],c[1001][1001]; 4 5 int main(){ 6…
 题意是需要求最大的扩散时间,最后输出的是一开始的火源点,那么我们比较容易想到的是二分找最大值,但是我们在这满足这样的点的时候可以发现,在当前扩散时间k下,以这个点为中心的(2k+1)2的正方形块内必须全部都是'X'才行,那么要访问这样的块内的'X'个数显然需要使用二维前缀和维护一下就可以O(1)求出个数,那么这部分问题我们解决,接下来就是二分的如何Check,那么既然我们之前找到了这样满足当期扩散时间的点后,我们只需要直接将这块矩形内部的点全部打标记,显然我们可以得知,如果当前扩散时间是满足要…
Monitor HDU 6514 二维差分入门学习 题意 小腾有\(n*m\)的田地,但是有小偷来偷东西,在一片矩形区域上,有一部分区域是监控可以覆盖到的,这部分区域由一个或多个包含于该矩形区域的小矩形构成:现在给你另一个包含在该矩形区域的小矩形A,问你这个小矩形能否被监控完全覆盖. 解题思路 这个题可以模拟做,就是开一个二维数组,把能监控的区域标记为1,否者就是0,然后在给的小矩形内看看这里面1的个数已不是等于小矩形的面积,是的话就是YES,否者就是NO.但是这个方法会超时.我就无能为力了,这…
题意:有一个二维平面,以及n个操作,每个操作会选择一个矩形,使得这个二维平面的一部分被覆盖.现在你可以取消其中的2个操作,问最少有多少块地方会被覆盖? 思路:官方题解简洁明了,就不细说了:https://codeforces.com/blog/entry/63729. 此处重点记录一下两种做法的巧妙之处. 1:二维差分+解方程 二维差分:假设在矩形[(x1, y1), (x2, y2)]上加一个数,那么在(x1, y1), (x2 + 1, y2 + 1)加1, (x1, y2 + 1), (x…
首先我们需要特判只涂了一种颜色的情况: (1)k=1,此时答案就是1:(2)k>1,涂的这种颜色肯定不能是第一个,答案是k-1; 对于其他正常情况,我们对于每个颜色找到一个最小的矩形(这个矩形内包含这种颜色出现的所有位置),用二维差分处理(sum数组),最后统计.如果某位置sum>1,说明这个位置被涂了不止一次,这种颜色就不可能是第一个涂的,打标记.最后统计没有打标记的颜色数量就是答案. 1 #include<bits/stdc++.h> 2 #define int long lo…
题意 给定一个\(n×m\)的矩阵.(\(n×m <= 1e7\)). \(p\)次操作,每次可以在这个矩阵中覆盖一个矩形. \(q\)次询问,每次问一个矩形区域中,是否所有的点都被覆盖. 解析 修改的时候用二维差分,判断的时候用二维前缀和. 增加矩形\((x1, y1),(x2, y2)\)时: dis[id(x1, y1)]++; dis[id(x1, y2+1)]--; dis[id(x2+1, y1)]--; dis[id(x2+1, y2+1)]++; 求矩形\((x1,y1),(x2…