Flink之状态之savepoint】的更多相关文章

1.总览 savepoints是外部存储的自包含的checkpoints,可以用来stop and resume,或者程序升级.savepoints利用checkpointing机制来创建流式作业的状态的完整快照(非增量快照),将checkpoint的数据和元数据都写入到一个外部文件系统. 如何触发.恢复或者释放savepoint了?下面一一道来. 2.分配Operator ID 极度推荐你给每个方法分配一个uid,这样才可以升级应用.ID起到的作用是明确每个operator的状态的使用范围.…
本文主要运行到Flink以下内容 检查点机制(CheckPoint) 状态管理器(StateBackend) 状态周期(StateTtlConfig) 关系 首先要将state和checkpoint概念区分开,可以理解为checkpoint是要把state数据持久化存储起来,checkpoint默认情况下会存储在JoManager的内存中.checkpoint表示一个Flink job在一个特定时刻的一份全局状态快照,方便在任务失败的情况下数据的恢复.在启动 CheckPoint 机制时,状态会…
参考来源: https://www.jianshu.com/p/6ed0ef5e2b74 https://blog.csdn.net/Fenggms/article/details/102855159 最近一直在看Flink,现在了解一下Flink的状态管理中的几种状态吧. 一.键State和操作State(Keyed State and Opetator State)Flink中有两种基本的状态:键状态(Keyed State)和操作状态(Operator State). 键状态(Keyed…
原文:https://blog.csdn.net/hxcaifly/article/details/84673292 https://blog.csdn.net/zero__007/article/details/88201498 https://www.jianshu.com/p/8e74c7cdd463 https://blog.csdn.net/u013014724/article/details/84800255 第一部分:Flink的Checkpoint 1. Flink Checkp…
在Flink中的每个函数和运算符都是有状态的.在处理过程中可以用状态来存储数据,这样可以利用状态来构建复杂操作.为了让状态容错,Flink需要设置checkpoint状态.Flink程序是通过checkpoint来保证容错,通过checkpoint机制,Flink可恢复作业的状态和计算位置. checkpoint检查点 前提条件 Flink的checkpoin机制需要与流和状态的持久化存储交互,一般它要求: 一个持久化的数据源 当Flink程序出现问题时,可以通过checkpoint持久化存储中…
1.理解State(状态) 1.1.State 对象的状态 Flink中的状态:一般指一个具体的task/operator某时刻在内存中的状态(例如某属性的值) 注意:State和Checkpointing 不要搞混 checkpoint则表示了一个Flink Job,在一个特定时刻的一份全状态快照,即包含一个job下所有task/operator 某时刻的状态 状态的作用 增量计算 聚合操作 机器学习训练模式 等等 容错 Job故障重启 升级 1.2.状态的分类 1.Operator Stat…
一.状态编程 Flink 内置的很多算子,数据源 source,数据存储 sink 都是有状态的,流中的数据都是 buffer records,会保存一定的元素或者元数据.例如 : ProcessWindowFunction会缓存输入流的数据,ProcessFunction 会保存设置的定时器信息等等. 1,算子状态(operator state) 算子状态的作用范围限定为算子任务.这意味着由同一并行任务所处理的所有数据都可以访问到相同的状态,状态对于同一任务而言是共享的.Flink为算子状态提…
参考地址:https://www.cnblogs.com/airnew/p/9544683.html 问题一.什么是状态? 问题二.Flink状态类型有哪几种? 问题三.状态有什么作用? 问题四.如何使用状态,实现什么样的API? 问题五.什么是checkpoint与savepoint?问题六.如何使用checkpoint与savepoint?问题七.checkpoint原理是什么? 问题八.什么是有状态的计算? 问题九.使用checkpoint的作用? 一.状态 定义: 一般指一个具体的 ta…
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/rlnLo2pNEfx9c/article/details/83422587 场景 近期在做一个画像的任务,sql实现的,当中有一个udf,会做非常多事情,包含将从redis读出历史值加权,并将中间结果和加权后的结果更新到redis. 大家都知道,flink 是能够支持事件处理的.也就是能够没有时间的概念,那么在聚合,join等操作的时候,flink内部会维护一个状态,假如此时你也用redis维护了…
1.前言 在Flink中,函数和操作符都可以是有状态的.在处理每个消息或者元素时,有状态的函数都会储存信息,使得状态成为精密操作中关键的组成部分. 为了使状态能够容错,Flink会checkpoints状态.checkpoints机制使得Flink可以恢复状态和位置,以至于流计算的应用可以提供无故障执行的语义. 2.前提 Flink的checkpointing机制对流和状态的可靠存储有如下两点要求: 持久化的数据源能够从某个时间进行消息回放.举个例子,对于消息队列而言,有Kafka,Rabbit…