目标检测 | Point Cloud RoI Pooling】的更多相关文章

CVPR2020论文解读:3D Object Detection三维目标检测 PV-RCNN:Point-Voxel Feature Se tAbstraction for 3D Object Detection 论文链接:https://arxiv.org/pdf/1912.13192.pdf 本文在LITTI数据集3D Object Detection三维目标检测性能排名第一. 摘要 提出了一种新的高性能的三维目标检测框架:点体素RCNN(PV-RCNN),用于从点云中精确检测三维目标.该方…
R-CNN需要大量的候选框,对每个候选框都提取特征,速度很慢,无法做到实时检测,无法做到端到端.ROI pooling层实现training和testing的显著加速,并提高检测accuracy. ROI pooling层能对不等尺寸的输入执行最大汇集以获得固定尺寸的特征映射,根据候选区域裁剪卷积特征图,然后用插值(通常是双线性的)将每个裁剪调整为固定大小(14×14×convdepth).裁剪之后,用 2x2 核大小的最大池化来获得每个建议最终的固定的 7×7×convdepth 特征图,然后…
作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 以前的CNNs都要求输入图像尺寸固定,这种硬性要求也许会降低识别任意尺寸图像的准确度.为避免这个问题,何凯明等人在该论文中提出了一种池化策略,"spatial pyramid pooling(SSP)",即空间金字塔池化.带有该池化层的网络被称为SPPnet,对任何尺寸的输入图像都能生成固定长度的特征表示.由此可见,理论上SPPnet可以改进所有基于CNN的图像分类等方法中…
Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 引用: He, Kaiming, et al. "Spatial pyramid pooling in deep convolutional networks for visual recognition." IEEE…
1.SPPnet池化过程 假设这个feature map的尺寸是M*N*256,将这个feature map的每一个channel以4*4,2*2和1*1来划分格子,每个格子里面做max pooling,这样就得到了256个21(4*4+2*2+1)数字的数组,然后合并得到尺寸为21*256的feature map.所有proposal对应的feature map都这样操作,就会得到统一的尺寸,然后进行FC连接.具体代码可参照:https://github.com/yueruchen/sppne…
1.roi pooling 将从rpn中得到的不同Proposal大小变为fixed_length output, 也就是将roi区域的卷积特征拆分成为H*W个网格,对每个网格进行maxpooling,然后就能得到固定大小的特征. 2.roi align 从原图的proposal映射回feature map,从原图到特征图直接的ROI映射使用双线性插值 形状不变 3.roi wrap 将fearure map 剪切一块,然后wrap到固定大小,采用长度和宽度两个方向的双线性插值. 形状改变 4.…
定位: 针对分类利用softmax损失函数,针对定位利用L2损失函数(或L1.回归损失等) 人关节点检测 针对连续变量和离散变量需要采用不同种类的损失函数. 识别: 解决方案: 1.利用滑动窗口,框的大小和位置无法确定,目标检测需要巨大的计算量,pass 2.备选区域 利用区域选择网络ROI,将ROI处理成固定尺寸(与下游网络输入尺寸匹配),经过CNN后利用SVM分类(RCNN也会对输入的边界作补偿或修正) 基于区域选择网络也可以作为修正boundingbox的回归 RCNN的问题: Fast…
目标检测方法系列--R-CNN, SPP, Fast R-CNN, Faster R-CNN, YOLO, SSD 目录 相关背景 从传统方法到R-CNN 从R-CNN到SPP Fast R-CNN Faster R-CNN YOLO SSD 总结 参考文献 推荐链接 相关背景 14年以来的目标检测方法(以R-CNN框架为基础或对其改进) 各方法性能对比 分类,定位,检测三种视觉任务的简单对比 一般的目标检测方法 从传统方法到R-CNN R-CNN的三大步骤:得到候选区域,用cnn提取特征,训练…
Object Detection,在给定的图像中,找到目标图像的位置,并标注出来. 或者是,图像中有那些目标,目标的位置在那.这个目标,是限定在数据集中包含的目标种类,比如数据集中有两种目标:狗,猫. 就在图像找出来猫,狗的位置,并标注出来 是狗还是猫. 这就涉及到两个问题: 目标识别,识别出来目标是猫还是狗,Image Classification解决了图像的识别问题. 定位,找出来猫狗的位置. R-CNN 2012年AlexNet在ImageNet举办的ILSVRC中大放异彩,R-CNN作者…
此示例演示如何使用名为“更快r-cnn(具有卷积神经网络的区域)”的深度学习技术来训练对象探测器. 概述 此示例演示如何训练用于检测车辆的更快r-cnn对象探测器.更快的r-nnn [1]是r-cnn [2]和快速r-nnn [3]对象检测技术的引伸.所有这三种技术都使用卷积神经网络(cnn).它们之间的区别在于它们如何选择要处理的区域以及如何对这些区域进行分类.r-cnn和快速r-概算在运行美国有线电视新闻网之前使用区域建议算法作为预处理步骤.提议算法通常是技术例如edgox [4]或选择性搜…