SoftMax多分类器原理及代码理解】的更多相关文章

关于多分类 我们常见的逻辑回归.SVM等常用于解决二分类问题,对于多分类问题,比如识别手写数字,它就需要10个分类,同样也可以用逻辑回归或SVM,只是需要多个二分类来组成多分类,但这里讨论另外一种方式来解决多分类——SoftMax. SoftMax模型 Softmax回归模型是logistic回归模型在多分类问题上的推广,当分类数为2的时候会退化为Logistic分类..在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目…
本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参考本文第一部分的算法简介. 经详细注释的代码:放在我的github地址上,可下载. 一.多层感知机(MLP)原理简介 多层感知机(MLP,Multilayer Perceptron)也叫人工神经网络(ANN,Artificial Neural Network),除了输入输出层,它中间可以有多个隐层,…
Lucene是一个基于Java的高效的全文检索库.那么什么是全文检索,为什么需要全文检索?目前人们生活中出现的数据总的来说分为两类:结构化数据和非结构化数据.很容易理解,结构化数据是有固定格式和结构的或者有限长度的数据,比如数据库,元数据等.非结构化数据则是不定长或者没有固定格式的数据,如图片,邮件,文档等.还有一种较少的分类为半结构化数据,如XML,HTML等,在一定程度上我们可以将其按照结构化数据来处理,也可以抽取纯文本按照非结构化数据来处理.非结构化数据又称为全文数据.,对其搜索主要有两种…
KNN原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9670187.html 1. KNN原理 KNN(k-Nearest Neighbour):K-近邻算法,主要思想可以归结为一个成语:物以类聚 1.1 工作原理 给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的 k (k <= 20)个实例,这 k 个实例的多数属于某个类, 就把该输入实例分为这个类. https://w…
AdaBoost原理与代码实现 本文系作者原创,转载请注明出处: https://www.cnblogs.com/further-further-further/p/9642899.html 基本思路 Adaboost体现的是“三个臭皮匠,胜过一个诸葛亮”,它是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器), 然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器).训练过程如下(参考Andy的机器学习--浅析Adaboost算法,他说得非常形象,贴切.) 简单的…
决策树系列三—CART原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9482885.html ID3,C4.5算法缺点 ID3决策树可以有多个分支,但是不能处理特征值为连续的情况. 在ID3中,每次根据“最大信息熵增益”选取当前最佳的特征来分割数据,并按照该特征的所有取值来切分, 也就是说如果一个特征有4种取值,数据将被切分4份,一旦按某特征切分后,该特征在之后的算法执行中, 将不再起作用,所以…
决策树之系列二—C4.5原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9435712.html ID3算法缺点 它一般会优先选择有较多属性值的Feature,因为属性值多的特征会有相对较大的信息增益,信息增益反映的是,在给定一个条件以后,不确定性减少的程度, 这必然是分得越细的数据集确定性更高,也就是条件熵越小,信息增益越大.为了解决这个问题,C4.5就应运而生,它采用信息增益率来作为选择分支的…
决策树之系列一ID3原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9429257.html 应用实例: 你是否玩过二十个问题的游戏,游戏的规则很简单:参与游戏的一方在脑海里想某个事物,其他参与者向他提问题,只允许提20个问题,问题的答案也只能用对或错回答.问问题的人通过推断分解,逐步缩小待猜测事物的范围.决策树的工作原理与20个问题类似,用户输人一系列数据,然后给出游戏的答案.如下表 假如我告诉…
内核版本: 3.10内核. CFQ,即Completely Fair Queueing绝对公平调度器,原理是基于时间片的角度去保证公平,其实如果一台设备既有单队列,又有多队列,既有快速的NVME,又有慢速的sas,各个磁盘都配置为CFQ的话,那么这个Completely Fair 明显无法保证,可能会演变为Completely unFair .所以nvme的盘,一般使用的是noop策略,因为一定时间之内的io,可能会下发很多给快速设备,也可能下发很少给慢速设备,这样就无公平可言了,吞吐量也不行.…
https://blog.csdn.net/qq_25737169/article/details/79048516 https://www.cnblogs.com/bonelee/p/8528722.html Notes on Batch Normalization Notes on Batch Normalization  发表于 2016-05-28 |  分类于 CNN , Op |  阅读次数: 16077 在训练深层神经网络的过程中, 由于输入层的参数在不停的变化, 因此, 导致了当…