numpy初始化】的更多相关文章

一般的初始化就是用zeros这种去初始化,但你想测试一些函数的时候,如果是全0其实不好测试 可以先用python本身初始化一个list,然后转换成numpy的array a = [1.1,1.5,1.7] b = numpy.array(a) >>> numpy.floor(b) array([ 1., 1., 1.]) 这样就能测试一个floor函数代表什么意思了…
mask_all = np.zeros((256, 256), dtype='uint8')  单通道 mask_all_enlarge = np.zeros((256, 256, 3), dtype='uint8'  三通道 #为三通道图像赋值,这里我用的是循环,因该还有更简单的方式 img_base = np.zeros((256, 256, 3), np.uint8)     for i in range(256):        for j in range(256):         …
一.使用Numpy初始化:[直接对Tensor操作] 对Sequential模型的参数进行修改: import numpy as np import torch from torch import nn # 定义一个 Sequential 模型 net1 = nn.Sequential( nn.Linear(30, 40), nn.ReLU(), nn.Linear(40, 50), nn.ReLU(), nn.Linear(50, 10) ) # 访问第一层的参数 w1 = net1[0].w…
我学习numpy过程的记录 1. 切片和索引 (1) 两种切片方式示例: (2) 多维数组: import numpy as np a = np.array([[1,2,3],[3,4,5],[4,5,6]]) print(a) # 从某个索引处开始切割 print('从数组索引 a[1:] 处开始切割') print(a[1:]) print (a[...,1]) # 第2列元素 print (a[1,...]) # 第2行元素 结果:[[1 2 3] [3 4 5] [4 5 6]] ———…
Scipy简介 文件输入和输出scipyio 线性代数操作scipylinalg 快速傅里叶变换scipyfftpack 优化器scipyoptimize 统计工具scipystats Scipy简介 Scipy是一个高级的科学计算库,它和Numpy联系很密切,Scipy一般都是操控Numpy数组来进行科学计算,所以可以说是基于Numpy之上了.Scipy有很多子模块可以应对不同的应用,例如插值运算,优化算法.图像处理.数学统计等. 以下列出Scipy的子模块: 模块名 功能 scipy.clu…
利用树莓派的摄像头去学习opencv的基本操作 —— 保存图片和视频 1.使用Opencv去控制树莓派的摄像头拍照并保存到本地,主要使用cv2和numpy库 #!/usr/bin/python3 # -*- coding:utf-8 -*- import cv2 import numpy #初始化摄像头 camera = cv2.VideoCapture(0) #读取图像 ret,img = camera.read() #转换为灰度图像 gray = cv2.cvtColor(img,cv2.C…
      初学神经网络和pytorch,这里参考大佬资料来总结一下有哪些激活函数和损失函数(pytorch表示)      首先pytorch初始化:   import torch import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt x = torch.linspace(-5, 5, 200) # 构造一段连续的数据 x = Variable(x)…
MindSpore技术理解(上) 引言 深度学习研究和应用在近几十年得到了爆炸式的发展,掀起了人工智能的第三次浪潮,并且在图像识别.语音识别与合成.无人驾驶.机器视觉等方面取得了巨大的成功.这也对算法的应用以及依赖的框架有了更高级的要求.深度学习框架的不断发展使得在大型数据集上训练神经网络模型时,可以方便地使用大量的计算资源. 深度学习是使用多层结构,从原始数据中自动学习并提取高层次特征的一类机器学习算法.通常,从原始数据中提取高层次.抽象的特征是非常困难的.目前有两种主流的深度学习框架:一种是…
一.基础: Numpy的主要数据类型是ndarray,即多维数组.它有以下几个属性: ndarray.ndim:数组的维数 ndarray.shape:数组每一维的大小 ndarray.size:数组中全部元素的数量 ndarray.dtype:数组中元素的类型(numpy.int32, numpy.int16, and numpy.float64等) ndarray.itemsize:每个元素占几个字节 例子: >>> import numpy as np >>> a…
http://blog.csdn.net/baiyu9821179/article/details/53365476 a=([3.234,34,3.777,6.33]) a为python的list类型 将a转化为numpy的array: np.array(a) array([  3.234,  34.   ,   3.777,   6.33 ]) 将a转化为python的list a.tolist()…
首先感谢这位博主整理的Andrew Ng的deeplearning.ai的相关作业:https://blog.csdn.net/u013733326/article/details/79827273 开一个我的github传送门,可以看到代码. https://github.com/VVV-LHY/deeplearning.ai/tree/master/improveNeuralNetwork/InitializeRegularize 以下是今天要分类的目标点集: 在初始化w权重矩阵为0的情况下…
一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 二.ndarray 是什么 ndarray 是一个多维的数组对象,具有矢量算术运算能力和复杂的广播能力,并具有执行速度快和节省空间的特点. ndarray 的一个特点是同构:即其中所有元素的类型必须相同. 三.ndarray 的创建 array() 函数 最简单的方法, 使用 NumPy 提供的…
在numpy包中我们可以用数组来表示向量,矩阵和高阶数据结构 首先导入numpy包: from numpy import* 初始化numpy数组有多种方式,比如说 1.python列表或元祖 2.使用arrange,linspace函数 3.从文件中读取数据 例:列表生成numpy数组: v=array([1,2,3,4]) M=array([[1,2],[3,4]]) v和M对象都是numpy模块提供的ndarray类型 v,M区别在于他们的维度不同 可以通过ndarray.shape获得他们…
对于从事机器学习的人,python+numpy+scipy+matplotlib是重要的基础:它们基本与matlab相同,而其中最重要的当属numpy:因此,这里列出100个关于numpy函数的问题,希望读者通过"题海"快速学好numpy:题中示例可以粘贴运行,读者可以边执行边看效果: 1  如何引入numpy? import numpy as np(或者from numpy import *) 2  如何定义一个数组? import numpy as np x = np.array(…
始终无法有效把word排版好的粘贴过来,排版更佳版本请见知乎文章: https://zhuanlan.zhihu.com/p/24309547 实在搞不定博客园的排版,排版更佳的版本在: 给深度学习入门者的Python快速教程 - numpy和Matplotlib篇 5.3 Python的科学计算包 - Numpy numpy(Numerical Python extensions)是一个第三方的Python包,用于科学计算.这个库的前身是1995年就开始开发的一个用于数组运算的库.经过了长时间…
这系列用来介绍Python的标准库的支持Numpy部分.资料来自http://wiki.scipy.org/Tentative_NumPy_Tutorial,页面有许多链接,这里是直接翻译,所以会无法链接.可以大致看完该博文,再去看英文版. 1.先决条件 想要运行numpy,首先最小安装的有:Python.NumPy.:a.ipython 是一个增强的交互式python shell,它对于探索numpy的特性是非常方便的:b.matplotlib可以让你进行plot 图表:c.SciPy提供许多…
转载 - Recurrent Neural Networks Tutorial, Part 2 – Implementing a RNN with Python, Numpy and Theano 本文是RNN教程的第二部分,第一部分教程在这里. 对应的样板代码在 Github上面. 在这部分内容中,我将会使用 numpy 和 theano 从头开始实现RNN 模型. 实验中涉及的代码可以在Github中找到.一些不重要的内容将会略去,但是Github中保留了全部的实践过程. 语言建模 Our…
Numpy 是Numerical Python的简写,用来进行高性能的科学计算以及数据分析的基础包.它是一些高级工具(pandas)的基础.它主要提供以下几个功能: (1). ndarray:计算快,空间效率高的多纬的数组 (2). 快速操作数组的标准数学函数 (3). 向磁盘读写数据的工具,提供内存影射文件功能 (3). 线性代数,随机数生成器,傅立叶变换功能 (4). 整合用C,C++,以及Fortran写的代码的工具 (Python生态系统宗重要的功能) 事实上Numpy本身没有提供太多数…
NumPy作为python科学计算的基础,为何python适合进行数学计算,除了简单易懂,容易学习 Python可以简单的调用大量的用c和fortran编写的legacy的库 Python科学计算的这几个库,单独安装还是蛮麻烦的,所以推荐这个包 http://www.continuum.io/downloads#all conda list #查看所有的可安装包   conda install wxpython #安装   conda install pyqt #安装   conda updat…
矩阵初始化 支持matlab语句初始化,支持narray和array初始化. >>> import numpy as np >>> M = np.matrix("1 2 3;4 5 6;7 8 9") >>> M matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) 矩阵相乘 支持点乘 >>> import numpy as np >>> M = np.matrix(…
Python/Numpy大数据编程经验 1.边处理边保存数据,不要处理完了一次性保存.不然程序跑了几小时甚至几天后挂了,就啥也没有了.即使部分结果不能实用,也可以分析程序流程的问题或者数据的特点.   2. 及时用 del 释放大块内存.Python缺省是在变量范围(variablescope)之外才释放一个变量,哪怕这个变量在后面的代码没有再被用到,所以需要手动释放大的array.    注意所有对数组的引用都del之后,数组才会被del.这些引用包括A[2:]这样的view,即使np.spl…
学机器学习做点小笔记,都是Python的NumPy库的基本小操作,图书馆借的书看到的,怕自己还了书后忘了,就记下来. 一般习惯导入numpy时使用 import numpy as np ,不要直接import,会有命名空间冲突.比如numpy的array和python自带的array. numpy下有两个可以做矩阵的东西,一个叫matrix,一个叫array.matrix指定是二维矩阵,array任意维度,所以matrix是array的分支,但是这个matrix和matlab的矩阵很像,操作也很…
可以来我的Github看原文,欢迎交流. https://github.com/AsuraDong/Blog/blob/master/Articles/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/numpy%E6%95%B0%E7%BB%84%E3%80%81%E5%90%91%E9%87%8F%E3%80%81%E7%9F%A9%E9%98%B5%E8%BF%90%E7%AE%97.md import numpy as np import pandas as pd…
一.常用链接: 1.Python官网:https://www.python.org/ 2.各种库的whl离线安装包:http://www.lfd.uci.edu/~gohlke/pythonlibs/#scikit-learn 3.数据分析常用库的离线安装包(pip+wheels)(百度云):http://pan.baidu.com/s/1dEMXbfN 密码:bbs2 二.常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和…
NumPy是一款用于科学计算的python包,强大之处在于矩阵的运算以及包含丰富的线性代数运算的支持.本文将对numpy一些常用的用法进行讲解,一来是对自己的知识进行梳理,二来作为一份备忘录供以后查阅. 创建数组 首先我们要先引入numpy,常用的引入方法为 import numpy as np np.zeros 该方法能够创建一个全为0的数组 >>np.zeros(5) array([ 0., 0., 0., 0., 0.]) 上面是创建一个1维的数组,创建一个多维的数组也很简单,eg下面是…
1,机器学习numpy 初识 1)numpy初识 import numpy num1= numpy.array([1,2,3]) dtype('num1') #查找类型 num1.dtype num1.shape #查找数据维数 num1.genfromtxt("wordll.txt",delimiter=',',dtype=str,skip_header=1) #通过文本读取数据 num1[0,2] #取指定标的数据 小标为0-2的数据 matrix = numpy.array([5…
生成多维高斯分布随机样本 生成多维高斯分布所需要的均值向量和方差矩阵 这里使用numpy中的多变量正太分布随机样本生成函数,按照要求设置均值向量和协方差矩阵.以下设置两个辅助函数,用于指定随机变量维度,生成相应的均值向量和协方差矩阵. import numpy as np from numpy.random import multivariate_normal from math import sqrt 均值向量生成函数 输入: n:指定随机样本的维度 输出: m1,m2:正类样本和负类样本的均…
pandas and numpy notebook        最近工作交接,整理电脑资料时看到了之前的基于Jupyter学习数据分析相关模块学习笔记.想着拿出来分享一下,可是Jupyter导出来html文件,博客园不支持js注入,贴图效果实在太差劲儿.所以只贴了内容,要是有需要文件原版(pdf.md.html等)可以在评论区说一下.        本系列是数据分析相关的,打算做一个持续连载,后边便于自己系统查看和回顾. 另外,本片博客在github上有PDF版本,并且格式也很清爽,请转htt…
前言 个人感觉网上对numpy的总结感觉不够详尽细致,在这里我对numpy做个相对细致的小结吧,在数据分析与人工智能方面会有所涉及到的东西在这里都说说吧,也是对自己学习的一种小结! numpy用法的介绍 安装部分我就不说了,装个pip,使用命令pip install numpy就可以安装了,在Ubuntu中可能会出现没有权限的提示,直接加上sudo即可,以下讲解都是建立在python3平台的讲解,python2类似,python3中安装的时候使用sudo pip3 install numpy即可…
一.实验说明 numpy 包为 Python 提供了高性能的向量,矩阵以及高阶数据结构.由于它们是由 C 和 Fortran 实现的,所以在操作向量与矩阵时性能非常优越. 1. 环境登录 无需密码自动登录,系统用户名shiyanlou 2. 环境介绍 本课程实验环境使用Spyder.首先打开terminal,然后输入以下命令: spyder -w scientific-python-lectures (-w 参数指定工作目录) 关于Spyder的使用可参考文档:https://pythonhos…