Bryce1010模板 /**** *扩展欧几里得算法 *返回d=gcd(a,b),和对应等式ax+by=d中的x,y */ long long extend_gcd(long long a,long long b,long long &x,long long &y) { if(a==0&&b==0)return -1;//无最大公约数 if(b==0){x=1;y=0;return a;} long long d=extend_gcd(b,a%b,y,x); y-=a/b…
一.欧几里得算法及其证明 1.定义: 欧几里得算法又称辗转相除法,用于求两数的最大公约数,计算公式为GCD(a,b)=GCD(b,a%b): 2.证明: 设x为两整数a,b(a>=b)的最大公约数,那么x|a,x|b; ①由整数除法具有传递性(若x能整除a,x能整除b,那么x可整除a,b的任意线性组合)知x|a-b; ②设x不是b的因子,则x不是b和a-b的公因子:设x不是a的因子,则x不是b和a-b的公因子:所以可以得出GCD(a,b)=GCD(b,a-b); ③由a>=b知,a可表示为a=…
欧几里得算法: 1.定义:gcd的意思是最大公约数,通常用扩展欧几里得算法求 原理:gcd(a, b)=gcd(b, a%b) 2.证明: 令d=gcd(a, b)  =>  a=m*d,b=n*d 则m*d=t*n*d+a%b  =>  a%b=d*(m-t*n) gcd(b, a%b)=gcd(n*d, (m-t*n)*d) 令gcd(n, m-t*n)=e  =>  n=x*e,m-t*n=y*e 则m-x*e*n=y*e  =>  m=e*(x*n+y) 由gcd(n, m…
欧几里得算法 欧几里得算法基于的性质: 若\(d|a, a|b\),则\(d|(ax+by)\) \((a,b)=(b,a~mod~b)\) 第二条性质证明: \(\because a~mod~b=a-\lfloor \frac{a}{b} \rfloor\times b\),令\(c=\lfloor \frac{a}{b} \rfloor\) 则问题等价于证明\((a,b)=(b,a-c\times b)\) 这个证明方法就和裴蜀定理的证明差不多. 证明:令\(d=gcd(a,b)\),则\(…
1141. RSA Attack Time limit: 1.0 secondMemory limit: 64 MB The RSA problem is the following: given a positive integer n that is a product of two distinct odd primes p and q, a positive integer e such that gcd(e, (p-1)*(q-1)) = 1, and an integer c, fi…
有这样的问题: 给你两个整数数$(a,b)$,问你整数$x$和$y$分别取多少时,有$ax+by=gcd(x,y)$,其中$gcd(x,y)$表示$x$和$y$的最大公约数. 数据范围$a,b≤10^{18}$. 求解这个问题有一种方法,叫做扩展欧几里得算法(简称扩欧),其本质是一个递归求解的过程. 首先由一个前置的结论是$gcd(x,y)=gcd(y,x\%y)$.此处的$\%$为$c++$中取模操作,下同. 我们不妨设$a>b$ 当$a≠0,b=0$时,则显然有$x=1,y=0$.此时$gc…
浅谈扩展欧几里得(扩展GCD)算法 本篇随笔讲解信息学奥林匹克竞赛中数论部分的扩展欧几里得算法.为了更好的阅读本篇随笔,读者最好拥有不低于初中二年级(这是经过慎重考虑所评定的等级)的数学素养.并且已经学会了学习这个算法的前置知识:欧几里得算法. 对于对欧几里得算法还有知识模糊的读者,请不要担心,这里为你准备了前导知识讲解,请移步至本蒟蒻的另两篇博客: 浅谈GCD 求最大公约数的方式 裴蜀定理 裴蜀定理的概念及证明 因为翻译版本的不同,这个定理可能还会被叫做贝祖定理.\(B\acute{e}zou…
关于欧几里得算法求最大公约数算法, 代码如下: int gcd( int a , int b ) { if( b == 0 ) return a ; else gcd( b , a % b ) ; } 证明: 对于a,b,有a = kb + r  (a , k , b , r 均为整数),其中r = a mod b . 令d为a和b的一个公约数,则d|a,d|b(即a.b都被d整除), 那么 r =a - kb ,两边同时除以d 得 r/d = a/d - kb/d = m (m为整数,因为r也…
题面 题目描述 给出一个有理数 c=\frac{a}{b}  ​ ,求  c mod19260817  的值. 输入输出格式 输入格式: 一共两行. 第一行,一个整数 \( a \) .第二行,一个整数 \( b \) . 输出格式: 一个整数,代表求余后的结果.如果无解,输出Angry! 说明 对于所有数据,\(  0\leq a,b \leq 10^{10001},0≤a,b≤1010001 \) 很平常的一道膜板题,求解除法取模需要利用乘法逆元的知识 直接扩展欧几里得算法求解逆元 至于数据…
1009:数论 扩展欧几里得算法 其实自己对扩展欧几里得算法一直很不熟悉...应该是因为之前不太理解的缘故吧这次再次思考,回看了某位大神的推导以及某位大神的模板应该算是有所领悟了 首先根据题意:L1=x+mt; L2=y+nt; 可知当两人相遇: L1-L2=k*l; 即 :(m-n)t-(y-x)=kL 根据整除取余的方法:[ a/b=c...d --> a-d=c*b;] 可得到:(m-n)t mod l=y-x; 得到线性同余方程 此方程有解当且仅当 y-x 能被 m-n 和l的最大公约数…
一.前言 本博客适合已经学会欧几里得算法的人食用~~~ 二.扩展欧几里得算法 为了更好的理解扩展欧几里得算法,首先你要知道一个叫做贝祖定理的玄学定理: 即如果a.b是整数,那么一定存在整数x.y使得$ax+by=gcd(a,b)$. 通俗的说就是:如果$ax+by=c$有解,那么$c\%gcd(a,b)=0$ 扩展欧几里得算法就是来求解$ax+by=c$这个方程的(判断有无解仅需使用欧几里得算法即可). 我们不妨从递归到底的情况来入手. 当$b==0$时,显然有: $\begin{cases}x…
相信大家对欧几里得算法,即辗转相除法不陌生吧. 代码如下: int gcd(int a, int b){ return !b ? gcd(b, a % b) : a; } 而扩展欧几里得算法,顾名思义就是对欧几里得算法的扩展. 切入正题: 首先我们来看一个问题: 求整数x, y使得ax + by = 1, 如果gcd(a, b) != 1, 我们很容易发现原方程是无解的.则方程ax + by = 1有正整数对解(x, y)的必要条件是gcd(a, b) = 1,即a, b 互质. 此时正整数对解…
先感谢参考文献:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 注:以下讨论的数均为整数 一.欧几里得算法(重点是证明,对后续知识有用) 欧几里得算法,也叫辗转相除,简称 gcd,用于计算两个整数的最大公约数 定义 gcd(a,b) 为整数 a 与 b 的最大公约数 引理:gcd(a,b)=gcd(b,a%b) 证明: 设 r=a%b , c=gcd(a,b) 则 a=xc , b=yc , 其中x , y互质…
在讲解扩展欧几里得之前我们先回顾下辗转相除法: \(gcd(a,b)=gcd(b,a\%b)\)当a%b==0的时候b即为所求最大公约数 好了切入正题: 简单地来说exgcd函数求解的是\(ax+by=gcd(a,b)\)的最小正整数解.根据数论的相关知识,一定存在一组解\(x,y\)使得\(ax+by=gcd(a,b)\).那就来谈谈具体如何来求解吧. 根据辗转相除法的内容\(gcd(a,b)=gcd(b,a\%b)\)我们可以得到:\[ax_1+by_1=gcd(a,b)=gcd(b,a\%…
题目链接:http://lightoj.com/volume_showproblem.php?problem=1306 You have to find the number of solutions of the following equation: Ax + By + C = Where A, B, C, x, y are integers and x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2. Input Input starts with an integer T (≤ ),…
Euclid算法(gcd) 在学习扩展欧几里得算法之前,当然要复习一下欧几里得算法啦. 众所周知,欧几里得算法又称gcd算法,辗转相除法,可以在\(O(log_2b)\)时间内求解\((a,b)\)(a,b的最大公约数). 其核心内容可以陈述为:\((a,b)=(b,a\%b)\),然后反复迭代该式缩小\(a,b\)规模,直到\(b=0\),得到a为最大公约数. 证明 设两数为\(a\ b(b<a)\),求它们最大公约数的步骤如下:用\(b\)除\(a\),即\(a/b=q-..r\),得\(a…
[题意]给定a,b,c,在天平左边放置若干重量a的砝码,在天平右边放置若干重量b的砝码,使得天平两端砝码差为c.设放置x个A砝码和y个B砝码,求x+y的最小值. [算法]数论(扩展欧几里德算法) [题解]问题转化为求满足方程ax+by=c,|x|+|y|的最小值. 先用扩展欧几里得算法求得通解. 由原方程得答案分布在y=-a/b*x+c/b(a>0,b>0,c>0),因此是k<0,b>0的直线. 由于斜率一定,min{|x|+|y|}一定出现在x轴两侧或y轴两侧,取这四个点判…
青蛙的约会 writer:pprp Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 119716 Accepted: 25238 Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某…
我们接着上面的欧几里得算法说 扩展欧几里得算法 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式\(^①\): ax+by = gcd(a, b) =d(解一定存在,根据数论中的相关定理).扩展欧几里德常用在求解模线性方程及方程组中. ①:裴蜀定理: 裴蜀定理\((Bezouts identity)\)是代数几何中一个定理,其内容是若设a,b是整数,则存在整数x,y,使得ax+by=gcd(a,b),(a,b)代表最大公因数,则设a,b是不全为零的整数,则存在整数x,y,使…
裴蜀定理: 对于\(a,b\in N^*, x, y\in Z\),方程\(ax+by=k\)当且仅当\(gcd(a, b)|k\)时有解. 证明: 必要性显然. 充分性:只需证明当\(k=gcd(a, b)\)有解. 设\(s\)为令方程有解的最小\(k\)值,\(gcd(a, b) = d\),首先有\(d|s\). 设$t = \lfloor \frac{a}{s} \rfloor,r = a \bmod s $ 则\(r = a - t * s = a - (ax + by)*t = (…
0.前言 相信大家对于欧几里得算法都已经很熟悉了.再学习数论的过程中,我们会用到扩展欧几里得算法(exgcd),大家一定也了解过.这是本蒟蒻在学习扩展欧几里得算法过程中的思考与探索过程. 1.Bézout定理 扩展欧几里得算法利用归纳法,证明了Bézout定理. Bézout定理:对于任意整数 \(a\),\(b\) ,存在一对整数 \(x\),\(y\),满足 \(ax+by=gcd(a,b)\) 在扩展欧几里得的算法中,我们求出 \(x\),\(y\) 的值. 2.证明 2.1 \(gcd\…
一.欧几里得算法 名字非常高大上的不一定难,比如欧几里得算法...其实就是求两个正整数a, b的最大公约数(即gcd),亦称辗转相除法 需要先知道一个定理: gcd(a, b) = gcd(b, a mod b) (其中a mod b != 0)  或  b (其中a mod b == 0) 证明: 后半部分呢...是废话,于是只要证明前半部分即可. 不妨设g = gcd(a, b),于是有 a = g * A, b = g * B 且 (A, B) = 1 故gcd(b, a mod b) =…
[题目]#6392. 「THUPC2018」密码学第三次小作业 / Rsa [题意]T次询问,给定正整数c1,c2,e1,e2,N,求正整数m满足: \(c_1=m^{e_1} \ \ mod \ \ N\) \(c_2=m^{e_2} \ \ mod \ \ N\) 保证\(c_1,c_2,e_1,e_2 \leq N,2^8 < N < 2^{63},T \leq 10^4,(e_1,e_2)=1,(m,N)=1\). [算法]扩展欧几里得算法 我们最终要求\(m\),而已知\(m^{e_…
http://poj.org/problem?id=1061 思路: 搞懂这个扩展欧几里得算法花了不少时间,数论真的是难啊. 含义:找出一对整数,使得ax+by=gcd(a,b). 接下来看这道题目,(x+mt)-(y+nt)=kl,转换成(n-m)t+kl=x-y. 令a=n-m,b=l,c=x-y,那么上式就变成了at+kb=c,之后就参照上面的算法来计算就行,具体参见代码. #include<iostream> #include<algorithm> #include<…
问题 C: 磨刀 时间限制: 1 Sec  内存限制: 128 MB提交: 190  解决: 39[提交] [状态] [讨论版] [命题人:admin] 题目描述 磨刀是一个讲究的工作,只能在n℃下进行,所以我们首先要做的就是把刀的表面温度提升到n℃.处理刀身温度有两种方式:    1.淬火,使刀身温度提高a℃:    2.冰敷,使刀身温度降低b℃.宝儿姐想知道,能否经过多次处理,使得刀身温度达到n℃. 输入 每组输入包含一行:包含三个非负整数n, a, b,含义如上文,数据范围均不超过2^63…
BUG 记录:移位运算与扩展欧几里得算法 起因 上个月就开始打算用C++写一个ECC的轮子(为什么?折磨自己呗!),奈何自己水平有点差,拖到现在才算写完底层的大数运算.在实现欧几里得算法的时候,我开始纠结了... 欧几里得算法的两种实现 耳熟能详的实现方案 这个实现只要了解过欧几里得算法的同学都很清楚,我把维基百科上的代码粘贴到这里,最开始我也是按照这样的方式写出来的代码,没过几个测试,bug就出来了. def ext_euclid(a, b): old_s,s=1,0 old_t,t=0,1…
@(学习笔记)[扩展欧几里得] 本以为自己学过一次的知识不会那么容易忘记, 但事实证明, 两个星期后的我就已经不会做扩展欧几里得了...所以还是写一下学习笔记吧 问题概述 求解: \[ax + by = (a, b)\] Hint: \((a, b)\)表示\(gcd(a, b)\) 分析解决 根据欧几里得算法(辗转相除法), \[(a, b) = (b, a \% b)\] 所以有\[ax + by = (a, b) = (b, a \% b) = bx' + (a \% b)y'\] 故我们…
题目链接 Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面.…
Bezout定理: 对于任意整数a,b,存在一对整数x,y满足:a*x+b*y=gcd(a,b) 证明如下: 在欧几里得算法的最后一步:b=0,即:gcd(a,0)=a 对于b>0,根据欧几里得算法gcd(a,b)=gcd(b,a%b).假设存在一对x,y满足:b*x+(a%b)*y=gcd(b,a%b) 因为b*x+(a%b)*y=b*x+(a-b*(a/b))*y=a*y+b*(x-(a/b)*y)   //规定这里和下一行的除号'/'是向下取整. 所以令x'=y,y'=x-(a/b)*y,…
最大公约数(Greatest Common Divisor, GCD),是指2个或N个整数共有约数中最大的一个.a,b的最大公约数记为(a, b).相对应的是最小公倍数,记为[a, b]. 在求最大公约数的几种方法中,欧几里得算法(辗转相除法)最为出名: 计算(a, b), 若b是0,则最大公约数为a:否则.将a除以b得到余数r,a和b的最大公约数就是b和r的最大公约数,即:(a, b) = (b, r) public static int gcd(int a ,int b){ if(b ==…