UVa1363 Joseph's Problem】的更多相关文章

题意:给出n和k,1≤n,k≤1e9,计算 切入点是k/i 和 k/(i+1)差距不大.令pi = k/i, ri = k%i.如果pi+1 == pi,那么ri+1 == k - pi(i+1) == ri - pi, 对于pi+z == pi,ri+z == ri - z*pi,这是等差数列可以O(1)计算出来.如果上界为j,那么k/j ≤ pi,j ≤ k/pi. /********************************************************* * --…
把整个序列进行拆分成[k,k/2),[k/2, k/3), [k/3,k/4)...k[k/a, k/b)的形式,对于k/i(整除)相同的项,k%i成等差数列. /*by SilverN*/ #include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<cmath> using namespace std; long long n,m,k; i…
题意: 给出n, k,求 分析: 假设,则k mod (i+1) = k - (i+1)*p = k - i*p - p = k mod i - p 则对于某个区间,i∈[l, r],k/i的整数部分p相同,则其余数成等差数列,公差为-p 然后我想到了做莫比乌斯反演时候有个分块加速,在区间[i, n / (n / i)],n/i的整数部分相同,于是有了这份代码. #include <cstdio> #include <algorithm> using namespace std;…
/** 题目:Joseph's Problem 链接:https://vjudge.net/problem/UVA-1363 题意:给定n,k;求k%[1,n]的和. 思路: 没想出来,看了lrj的想法才明白. 我一开始往素数筛那种类似做法想. 想k%[1,n]的结果会有很多重复的,来想办法优化. 但没走通. 果然要往深处想. 通过观察数据发现有等差数列.直接观察很难确定具体规律:此处应该想到用式子往这个方向推导试一试. lrj想法: 设:p = k/i; 则:k%i = k-i*p; 容易想到…
链接:https://vjudge.net/problem/UVA-1363 题意:给出n  k,当 i 属于 1~n 时 ,求解 n% i 的和 n 和 k 的范围都是 1 到 10^9; 商相同 的余数数列 是 公差为商 的 递减等差数列 应该让k / i相等的一连串k % i相加,举个例子: 100 / 34 = 2 ... 32 100 / 35 = 2 ... 30 100 / 36 = 2 ... 28 ... 100 / 50 = 2 ... 0 递减等差数列通项公式:an=a1-…
https://vjudge.net/problem/UVA-1363 n 题意:求 Σ  k%i i=1 除法分块 如果 k/i==k/(i+1)=p 那么 k%(i+1)=k-(i+1)*p= k-i*p-p = k%i-p 所以 商相同时,余数为等差数列 我不知道为什么交到vjudge一直WA,网上搜的题解交上去也WA #include<cmath> #include<cstdio> using namespace std; int main() { int n,k,i,j,…
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4109 题意: 输入正整数n和k(1≤n,k≤1e9),计算sum(k mod i)(1≤i≤n). 分析: 被除数固定,除数逐次加1,直观上余数也应该有规律.假设k/i的整数部分等于d,则k mod i = k-i*d.因为k/(i+1)和k/i差别不大,如果k/(i+1)的整数部…
题意:给你正整数n和k,然后计算从i到n k%i的和: 思路:如果n小于1000000,直接暴力计算,然后大于1000000的情况,然后在讨论n和k的大小,根据k%i的情况,你会发现规律,是多个等差数列,然后你把这些等差数列加上就是答案. #include <cstdio> #include <cstring> #include <algorithm> #define ll long long using namespace std; ll n,k; ll Getsum…
题意:给定n, k,求出∑ni=1(k mod i) 思路:由于n和k都很大,直接暴力是行不通的,然后在纸上画了一些情况,就发现其实对于k/i相同的那些项是形成等差数列的,于是就可以把整个序列进行拆分成[k,k/2],[k/2, k/3], [k/3,k/4]...k[k/a, k/b]这样的等差数列,利用大步小步算法思想,这里a枚举到sqrt(k)就可以了,这样就还剩下[1,k/a]的序列需要去枚举,总时间复杂度为O(sqrt(k)),然后注意对于n大于k的情况,n超过k的部分全是等于k,为(…
给定$n,k$$(1\leqslant n,k\leqslant 10^9)$,计算$\sum\limits _{i=1}^nk\: mod\:i$ 通过观察易发现$k\%i=k-\left \lfloor \frac{k}{i} \right \rfloor*i$,因此我们考虑把$\left \lfloor \frac{k}{i} \right \rfloor$的值相同的$i$分成一组直接求和,复杂度为$O(\sqrt{n})$. 整除分块原理(选自某dalao博客) #include<bit…