B树与B+详解】的更多相关文章

AVL树平衡旋转详解 概述 AVL树又叫做平衡二叉树.前言部分我也有说到,AVL树的前提是二叉排序树(BST或叫做二叉查找树).由于在生成BST树的过程中可能会出现线型树结构,比如插入的顺序是:1, 2, 3, 4, 5, 6, 7..., n.在BST树中,比较理想的状况是每个子树的左子树和右子树的高度相等,此时搜索的时间复杂度是log(N).可是,一旦这棵树演化成了线型树的时候,这个理想的情况就不存在了,此时搜索的时间复杂度是O(N),在数据量很大的情况下,我们并不愿意看到这样的结果. 现在…
题外话: 一道至今为止做题时间最长的题: begin at 8.30A.M 然后求助_yjk dalao后 最后一次搞取模: awsl. 正解开始: 题目链接. 树链剖分,指的是将一棵树通过两次遍历后将一棵树分成重链,轻边的过程. 我们定义: 重儿子:每个点的子树中,子树大小(即节点数)最大的子节点 轻儿子:除重儿子外的其他子节点 重边:每个节点与其重儿子间的边 轻边:每个节点与其轻儿子间的边 重链:重边连成的链 轻链:轻边连成的链(目前没用到过,还是太菜) 于是乎,我们来举个栗子: 其中,红色…
(一)树状数组的概念 如果给定一个数组,要你求里面所有数的和,一般都会想到累加.但是当那个数组很大的时候,累加就显得太耗时了,时间复杂度为O(n),并且采用累加的方法还有一个局限,那就是,当修改掉数组中的元素后,仍然要你求数组中某段元素的和,就显得麻烦了.所以我们就要用到树状数组,他的时间复杂度为O(lgn),相比之下就快得多.下面就讲一下什么是树状数组: 一般讲到树状数组都会少不了下面这个图: 下面来分析一下上面那个图看能得出什么规律: 据图可知:c1=a1,c2=a1+a2,c3=a3,c4…
1.前提 讲LSM树之前,需要提下三种基本的存储引擎,这样才能清楚LSM树的由来: 哈希存储引擎. B树存储引擎. LSM树(Log-Structured Merge Tree)存储引擎. 2. 哈希存储引擎 哈希存储引擎哈希表的持久化实现,支持增.删.改以及随机读取操作,但不支持顺序扫描,对应的存储系统为key-value存储系统.对于key-value的插入以及查询,哈希表的复杂度都是O(1),明显比树的操作O(n)快,如果不需要有序的遍历数据,哈希表就非常适合.代表性的数据库有:Redis…
洛谷·[模板]树链剖分 写在前面 首先,在学树链剖分之前最好先把 LCA.树形DP.DFS序 这三个知识点学了 emm还有必备的 链式前向星.线段树 也要先学了. 如果这三个知识点没掌握好的话,树链剖分难以理解也是当然的. 树链剖分 树链剖分 就是对一棵树分成几条链,把树形变为线性,减少处理难度 需要处理的问题: 将树从x到y结点最短路径上所有节点的值都加上z 求树从x到y结点最短路径上所有节点的值之和 将以x为根节点的子树内所有节点值都加上z 求以x为根节点的子树内所有节点值之和 目录: 概念…
承接上篇SQLite采用B树结构使得SQLite内存占用资源较少,本篇将讲述B树的具体操作(建树,插入,删除等操作).在看博客时,建议拿支笔和纸,一点一点操作,毕竟知识是自己的,自己也要消化的.本篇通读下来,大约需要25-35分钟,关键掌握B树的具体操作思想,欢迎大家指正. 一.前言 动态查找树主要包括:二叉查找树,平衡二叉树,红黑树,B树,B-树,查找的时间复杂度就为O(log2N),通过对数就可以发现降低树的深度就会提高查找效率.在大数据存储过程,大量的数据会存储到外存磁盘,外存磁盘中读取与…
笔者最近学了表达式树这一部分内容,为了加深理解,写文章巩固知识,如有错误,请评论指出~ 表达式树的概念 表达式树的创建有 Lambda法 和 组装法. 学习表达式树需要 委托.Lambda.Func<> 基础. 表达式树 形状可以参考 二叉树. 可以把表达式树理解成 数学表达式. 数学表达式的所有常量.符号为表达式树的底节点.每一次计算生成的结果是一个结点,或者说他们的共同结点就是他们应该进行的运算. 生成表达式树 表达式树的创建有 Lambda表达式法 和 组装法 为了方便,这里指定生成的表…
树状数组,学长很早之前讲过,最近才重视起来,enmmmm... 树状数组(Binary Indexed Tree(B.I.T), Fenwick Tree)是一个查询和修改复杂度都为log(n)的数据结构.主要用于查询任意两位之间的所有元素之和,但是每次只能修改一个元素的值:经过简单修改可以在log(n)的复杂度下进行范围修改,但是这时只能查询其中一个元素的值(如果加入多个辅助数组则可以实现区间修改与区间查询). 树状数组和线段树很像,但能用树状数组解决的问题,基本上都能用线段树解决,而线段树能…
哈夫曼树的介绍 Huffman Tree,中文名是哈夫曼树或霍夫曼树,它是最优二叉树. 定义:给定n个权值作为n个叶子结点,构造一棵二叉树,若树的带权路径长度达到最小,则这棵树被称为哈夫曼树. 这个定义里面涉及到了几个陌生的概念,下面就是一颗哈夫曼树,我们来看图解答. (01) 路径和路径长度 定义:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径.通路中分支的数目称为路径长度.若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1. 例子:100和80的路径长度…
https://blog.csdn.net/xgf415/article/details/75196714 SVN 冲突包括 内容冲突:当两名(或更多)开发人员修改了同一个文件中相邻或相同的行时就会发生文件冲突. 树冲突:当一名开发人员移动.重命名.删除一个文件或文件夹,而另一名开发人员也对它们进行了移动.重命名.删除或者仅仅是修改,在更新时就会发生树冲突. SVN 的基本使用和内容冲突的解决方法可以参考这篇博客TortoiseSVN 和 VisualSVN Server 使用教程. 树冲突类型…