题意 给出一个长度为 \(n\) 的序列 \(\{a_i\}\) 以及一个数 \(p\) ,现在有 \(m\) 次操作,每次操作将 \([l, r]\) 区间内的 \(a_i\) 变成 \(c^{a_i}\) . 或者询问 \([l, r]\) 之间所有 \(a_i\) 的和对 \(p\) 取模的结果 . \(n, m \le 5 \times 10^4, p \le 2^{14}\) 题解 考虑欧拉降幂(扩展欧拉定理),不会的可以看 这篇博客 . 然后对于这些不断叠加的指数,有如下式子 \[…
题目:https://loj.ac/problem/3094 弱化版是 AGC017C . 用线段树维护那个题里的序列即可. 对应关系大概是: 真实值的范围是 [ 1-m , n+m ] :考虑设偏移量 fx ,使得 a[ i ]+fx 是真实值.如果整体 +1 ,就 fx+1 . 因为要记录每个值的个数,所以 a[ i ] 最好都是非负的.那么令 fx 的初值是 -m ,a[ i ] 的最小值是 “最小的真实值 - fx ”,就是 1-m+m 了. 已经有了 a[ ] 的范围是 [ 1 , n…
这题是六省联考的...据说数据还出了点锅,心疼六省选手QAQ 首先要知道扩展欧拉定理... 可以发现每次区间操作都会使模数进行一次phi操作,而一个数最多取logp次phi就会变成1,这时后面的指数就没有用了,以后这个数的答案就不会变化了,也就是说一个数最多只会进行log次修改,那么我们就可以用线段树维护,如果某棵子数的最小操作次数达到了使模数变成1的次数我们就不需要修改了. 但是我们发现快速幂还有一个log,如果不优化的话三个log很有可能TLE.这个时候就有新操作了,底数是一定的c,指数最大…
原题为2017六省联考的D1T3 给出一个序列,m次操作,模数p和参数c 操作分为两种: 1.将[l,r]区间内的每个数x变为\(c^x\) 2.求[l,r]区间内数的和%p 首先,我们要了解一些数论姿势: 1.扩展欧拉定理 //我们熟知的费马小定理用于p是质数,欧拉定理用于a,p互质,而这道题都不满足这个限制 当\((b>=\phi(p))\)时,\(a^b=a^{b\mod \phi(p) + \phi(p)}\) 2.(其实不算数论姿势)一个数最多经过log此\(\phi\)就会变成1 所…
#2143. 「SHOI2017」组合数问题   题目描述 组合数 Cnm\mathrm{C}_n^mC​n​m​​ 表示的是从 nnn 个互不相同的物品中选出 mmm 个物品的方案数.举个例子, 从 (1,2,3)(1, 2, 3)(1,2,3) 三个物品中选择两个物品可以有 (1,2)(1, 2)(1,2),(1,3)(1, 3)(1,3),(2,3)(2, 3)(2,3) 这三种选择方法.根据组合数的定义,我们可以给出计算组合数 Cnm\mathrm{C}_n^mC​n​m​​ 的一般公式…
题意 https://loj.ac/problem/2142 思路 一个数如果要作为指数,那么它不能直接对模数取模,这是常识: 诸如 \(c^{c^{c^{c..}}}\) 的函数递增飞快,不是高精度可以描述的,这也是常识. 所以,此题要用到很多数论知识. 欧拉函数 定义 \(\varphi(n)\) 为 \([1,n]\) 中与 \(n\) 互质的正整数个数(包括 \(1\)). 通式 \(\displaystyle \varphi(n)=n\prod_{p|n}(1-{1\over p})\…
题意 给你一颗 \(n\) 个点的树,每个点的度数不超过 \(20\) ,有 \(q\) 次修改点权的操作. 需要动态维护带权重心,也就是找到一个点 \(v\) 使得 \(\displaystyle \sum_{v} w_v \times \mathrm{dist}(u, v)\) 最小. 数据范围 \(n \le 10^5, q \le 10^5, \forall v, w_v \ge 0\) 题解 \(\text{Update on 2019.3.29:}\) 似乎可以二叉化就可以不用保证度…
[题目]#6396. 「THUPC2018」弗雷兹的玩具商店 / Toyshop [题意]给定一个长度为n的物品序列,每个物品有价值.不超过m的重量.要求支持以下三种操作:1.物品价值区间加减,2.物品重量区间加(超过m部分取模),3.区间物品求解容量为m的完全背包数组.\(n \leq 2*10^5,m \leq 60,Q \leq 3*10^4\). [算法]线段树+完全背包 显然,每个重量只需要保留价值最大的物品. 然后就很简单了,线段树每个维护一个数组c[x]表示重量x的最大价值,区间循…
题目链接 LOJ #2145 题解 一道画风正常的--期望DP? 首先考虑如何以最小步数熄灭所有灯:贪心地从大到小枚举灯,如果它亮着则修改它.可以求出总的最小步数,设为\(cnt\). 然后开始期望DP.设\(dp[i]\)为当前最小步数是\(i\),总最小步数是\(i\),要达到最小步数是\(i - 1\)的状态,期望要走多少步.则有\(\frac{i}{n}\)的几率恰好走了该走的一步,而有\(\frac{n - i}{n}\)的几率走错了(回到了\(dp[i + 1]\)表示的状态). 则…
题目链接 LOJ #2141 题解 据说这道题可以三分(甚至二分)? 反正我是枚举的 = = 先将t和b数组排序后计算出前缀和, 然后枚举最晚的出成绩时间,每次可以O(1)直接计算调整到该时间所需的代价. 如何计算? 对于学生不满意造成的代价,是 (不满意人数 * 最晚结束时间) - 所有不满的人的t之和; 对于调整老师造成的代价, A < B 时先用A调整 (可用前缀和计算出有多少时间能用来交换,又有多少时间需要被交换)再用B调整仍超出的部分; 否则都用B调整. 真的如高大佬所言是sb题啊 =…