load iris_data.mat P_train = []; T_train = []; P_test = []; T_test = []; for i = 1:3 temp_input = features((i-1)*50+1:i*50,:); temp_output = classes((i-1)*50+1:i*50,:); n = randperm(50); P_train = [P_train temp_input(n(1:40),:)']; T_train = [T_train…
%ELM:ELM基于近红外光谱的汽油测试集辛烷值含量预测结果对比—Jason niu load spectra_data.mat temp = randperm(size(NIR,1)); P_train = NIR(temp(1:50),:)'; T_train = octane(temp(1:50),:)'; P_test = NIR(temp(51:end),:)'; T_test = octane(temp(51:end),:)'; N = size(P_test,2); [Pn_tra…
load spectra_data.mat plot(NIR') title('Near infrared spectrum curve—Jason niu') temp = randperm(size(NIR,1)); P_train = NIR(temp(1:50),:)'; T_train = octane(temp(1:50),:)'; P_test = NIR(temp(51:end),:)'; T_test = octane(temp(51:end),:)'; N = size(P_…
load spectra_data.mat temp = randperm(size(NIR,1)); P_train = NIR(temp(1:50),:)'; T_train = octane(temp(1:50),:)'; P_test = NIR(temp(51:end),:)'; T_test = octane(temp(51:end),:)'; N = size(P_test,2); net = newrbe(P_train,T_train,0.3); w1=net.iW{1,1}…
基于Python的卷积神经网络和特征提取 用户1737318发表于人工智能头条订阅 224 在这篇文章中: Lasagne 和 nolearn 加载MNIST数据集 ConvNet体系结构与训练 预测和混淆矩阵 过滤器的可视化 Theano层的功能和特征提取 作者:Christian S.Peron 译者:刘帝伟 摘要:本文展示了如何基于nolearn使用一些卷积层和池化层来建立一个简单的ConvNet体系结构,以及如何使用ConvNet去训练一个特征提取器,然后在使用如SVM.Logistic…
基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 TensorFlow 和 Keras 等框架的出现大大降低了编程的复杂度,而迁移学习的思想也允许我们利用现有的模型加上少量数据和训练时间,取得不俗的效果. 这篇文章将示范如何利用迁移学习训练一个能从图片中分类不同种类的花的模型,它在五种花中能达到 80% 以上的准确度(比瞎蒙高了 60% 哦),而且只需要普…
故障诊断主要包括三部分: 1.故障信号检测方法(定子电流信号检测 [ 定子电流幅值和电流频谱 ] ,振动信号检测,温度信号检测,磁通检测法,绝缘检测法,噪声检测法) 2.故障信号的处理方法,即故障特征提取(FFT,Hilbert 变换,小波变换,Hilbert-Huang变换). 3.故障识别技术 基于解析模型法(建立良好的电机模型并对隔状态参数进行估计,需要较好的专业知识) 基于人工智能法(基于专家系统:建立对比数据库:基于神经网络来做故障分类和识别:基于SVM,可处理分类时实现现有样本的最优…
本文是深度学习入门: 基于Python的实现.神经网络与深度学习(NNDL)以及动手学深度学习的读书笔记.本文将介绍基于Numpy的卷积神经网络(Convolutional Networks,CNN)的实现,本文主要重在理解原理和底层实现. 一.概述 1.1 卷积神经网络(CNN) 卷积神经网络(CNN)是一种具有局部连接.权重共享和平移不变特性的深层前馈神经网络. CNN利用了可学习的kernel卷积核(filter滤波器)来提取图像中的模式(局部和全局).传统图像处理会手动设计卷积核(例如高…
一.java环境中基于jvm的两大语言:scala,groovy 可以在java项目里混编这两种语言: scala:静态语言,多范式语言,糅合了面向对象.面向过程:可以与java和net互操作:融汇了众多的语言特性,包括类似net的闭包.lambda表达式:正是语言特性较多,语言复杂度也较高~~ groovy:动态语言,既可作为面向对象语言又可做脚本语言:拥有动态语言的好处:语法简单~~ scala.groovy都是作为java的替代语言,基于jdk1.6可以使用起来像jdk1.8的高级语法特性…
写在前面 研究K8S有一段时间了,最开始学习K8S时,根据网上的教程安装K8S环境总是报错.所以,我就改变了学习策略,先不搞环境搭建了.先通过官网学习了K8S的整体架构,底层原理,又硬啃了一遍K8S源码.别问我为哈这样学,只是我觉得对我个人来说,这样学能让我更好的理解整套云原生体系.这不,这次,我总结了如何一次性成功安装K8S集群的方法.我们今天先来说说如何基于一主两从模式搭建K8S集群.后面,我们再上如何完全无坑搭建K8S高可用集群的方案. 文章和搭建环境所需要的yml文件已收录到:https…