MT【33】证明琴生不等式】的更多相关文章

解答:这里数学归纳法证明时指出关键的变形. 评:撇开琴生不等式自身的应用和意义外,单单就这个证明也是一道非常不错的练习数学归纳法的经典题目.…
评:切线不等式和琴生(Jesen)不等式都是有其几何意义的,在对称式中每一项单变量后利用图像的凹凸性得到一个线性的关系式.已知的条件往往就是线性条件,从而可以得到最值.…
评:舒尔的想法是美妙的,当然他本身也有很多意义,在机械化证明的理念里,它也占据了一方田地.…
已知 $a,b,c\in\mathbb R$,求证:$|a|+|b|+|c|+|a+b+c|\geqslant |a+b|+|b+c|+|c+a|$ 分析:不妨设$c=\max\{a,b,c\},\dfrac{a}{c}=x,\dfrac{b}{c}=y$两边同除$|c|$后只需证明 $|x|+|y|+1+|x+y+1|\ge|x+y|+|y+1|+|x+1|$注意到恒等式$|x|+|y|+|z|=\max\{|x+y+z|,|x+y-z|,|x-y+z|,|x-y-z|\}$,易得. 练习:…
证明: 评: 可以思考$\frac{1}{(1+b)^2}+\frac{1}{(1+a)^2}$与$\frac{2}{(1+\sqrt{ab})^2}$大小.…
已知$a,b>0$且$\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{3}$,求$\dfrac{1}{a-1}+\dfrac{4}{b-1}$的最小值. 解:令$m=\dfrac{1}{a},n=\dfrac{1}{b}$,则$m+n=\dfrac{2}{3}$$\dfrac{1}{a-1}+\dfrac{4}{b-1}=\dfrac{m}{1-m}+\dfrac{4n}{1-n}=\dfrac{1}{1-m}+\dfrac{4}{1-n}-5\ge\dfrac{(1+2…
(2014北约自主招生)已知正实数$x_1,x_2,\cdots,x_n$满足$x_1x_2\cdots x_n=1,$求证:$(\sqrt{2}+x_1)(\sqrt{2}+x_2)\cdots(\sqrt{2}+x_n)\ge(\sqrt{2}+1)^n$ 分析:根据$\dfrac{\sum\limits_{k=1}^n\dfrac{\sqrt{2}}{\sqrt{2}+x_k}}{n}\ge\sqrt[n]{\prod\limits_{k=1}^n\dfrac{\sqrt{2}}{\sqr…
已知$\theta\in[0,2\pi]$对任意$x\in[0,1],2x^2sin\theta-4x(1-x)cos\theta+3(1-x)^2>0$恒成立.求$\theta$的范围. 解答:令$x=1$易得$sin\theta>0,\because x\in(0,1)$,$$2x^2sin\theta-4x(1-x)cos\theta+3(1-x)^2$$ $$\ge2\sqrt{6}x(1-x)\sqrt{sin\theta}-4x(1-x)cos\theta$$ $$=2x(1-x)…
一.前述 数学基础知识对机器学习还有深度学习的知识点理解尤为重要,本节主要讲解极限等相关知识. 二.极限 1.例子 当 x 趋于 0 的时候,sin(x) 与 tan(x) 都趋于 0. 但是哪一个趋于 0 的速度更快一些呢? 我们考察这两个函数的商的极限, 所以当 x → 0 的时候,sin(x) 与 tan(x) 是同样级别的无穷小. 2.相关定理 如果三个函数满足 f(x) ≤ g(x) ≤ h(x), 而且他们都在 x0 处有极 限,那么 重要极限: 三.微分学 微分学的核心思想: 逼近…
整理即证 参考资料: [1].琴生不等式及其加权形式的证明.Balbooa.https://blog.csdn.net/balbooa/article/details/79357839.2018.2 [2].Minkowski不等式的证明. http://www.doc88.com/p-2542077482568.html…
例题已知正数\(a.b\)满足条件\(a+b=1\),求\((a+\cfrac{1}{a})^2+(b+\cfrac{1}{b})^2\)的最小值: 易错方法\((a+\cfrac{1}{a})^2+(b+\cfrac{1}{b})^2\) \(=a^2+\cfrac{1}{a^2}+b^2+\cfrac{1}{b^2}+4\) \(\ge 2\sqrt{a^2\cdot \cfrac{1}{a^2}}+2\sqrt{b^2\cdot \cfrac{1}{b^2}}+4=8\) 这个解法的错误在…
本文根据以下参考资料进行整理: 1.维基百科:https://zh.wikipedia.org/wiki/%E4%BA%92%E4%BF%A1%E6%81%AF 2.新浪博客:http://blog.sina.com.cn/s/blog_6255d20d0100ex51.html     在概率论和信息论中,两个随机变量的互信息(Mutual Information,简称MI)或转移信息(transinformation)是变量间相互依赖性的量度.不同于相关系数,互信息并不局限于实值随机变量,它…
文章分类:综合技术 1. 引子 Bag-of-Words 模型是NLP和IR领域中的一个基本假设.在这个模型中,一个文档(document)被表示为一组单词(word/term)的无序组合,而忽略了语法 或者词序的部分.BOW在传统NLP领域取得了巨大的成功,在计算机视觉领域(Computer Vision)也开始崭露头角,但在实际应用过程中,它却有一些不可避免的缺陷,比如: 稀疏性(Sparseness): 对于大词典,尤其是包括了生僻字的词典,文档稀疏性不可避免: 多义词(Polysem):…
Contest Page 因为一些特殊的原因所以更得不是很及时-- A sol 不难发现当某个人diss其他所有人的时候就一定要被删掉. 维护一下每个人会diss多少个人,当diss的人数等于剩余人数$-1$的时候放队列里,每一次取队头更新其他人diss的人数. code B sol 一个结论:对于序列$a_1,a_2,...,a_n$,其前缀$gcd$数量不超过$log_2a_i$种.证明考虑从前往后计算前缀$gcd$,那么从第$i-1$个$gcd$到第$i$个$gcd$,数值要么不变要么至少…
序 希望,不要还有一天像今天一样糟糕. T1 three strings 笔记本的google 炸了,读题可难受了 多组测试数据 我们的想法是,用string存字符串,若 对于任意的i,a[i],b[i],c[i]里没有至少两个相同,那么就不是,反之是对 #include <bits/stdc++.h> typedef long long ll; typedef unsigned long long ull; typedef double db; #define fake int using…
1 一个经典例子 ​ 一个经典的例子就是Polynomial Curve Fitting问题,现在将以此为基础介绍一些基本概念和方法.该问题的主要思路是针对给定的训练集\(\mathbf{x}\equiv(x_1,x_2,\cdots,x_N)^T\)与\(\mathbf{t}\equiv(t_1,t_2,\cdots,t_N)^T\),选取适当的模型(在这个问题中是多项式模型)和适当的参数集\(\mathbf{w}=(w_0,x_1,\cdots,w_M)^T\)使得与拟合结果 \[y(x,\…
初等数论学习笔记 I:同余相关. 初等数论学习笔记 II:分解质因数. 1. 数论函数 本篇笔记所有内容均与数论函数相关.因此充分了解各种数论函数的名称,定义,符号和性质是必要的. 1.1 相关定义 数论函数:定义域为正整数的函数称为 数论函数.因其在所有正整数处均有定义,故可视作数列.OI 中常见的数论函数的陪域(即可能的取值范围)为整数. 加性函数:若对于任意 \(a, b\in \mathbb{N}_+\) 且 \(a\perp b\) 均有 \(f(ab) = f(a) + f(b)\)…
熵 给定一个离散变量,我们观察它的每一个取值所包含的信息量的大小,因此,我们用来表示信息量的大小,概率分布为.当p(x)=1时,说明这个事件一定会发生,因此,它带给我的信息为0.(因为一定会发生,毫无悬念) 如果x和y独立无关,那么: 他们之间的关系为: (p(x)=1时,h(x)=0,负号为了确保h(x)为正,这里取2为底是随机的,可以取其他的正数(除了1)) 因此,对于所有x的取值,它的熵有: 注:,当遇到时, 这里插一段信息熵的解释: ———————————————————————————…
[转载请注明出处]http://www.cnblogs.com/mashiqi 2014/11/18 更新.发现以前的公式(2)里有错误,现已改过来.由于这几天和Can讨论了EM算法,回头看我以前写的这篇博客的时候,就发现公式里面有一个错误(多了一个连加符号),现在改正过来了.经过和Can的讨论,我又认真思考了EM算法,发现以前确实是没有弄懂这个算法的本质的.加油,以后学习知识不要只停留在表面上,要有insight!!! 2014/5/19 本文公式编辑捉鸡,请知道怎么在博客园里高效编辑公式的朋…
在上一篇博客中介绍的论文"Show and tell"所提出的NIC模型采用的是最"简单"的encoder-decoder框架,模型上没有什么新花样,使用CNN提取图像特征,将Softmax层之前的那一层vector作为encoder端的输出并送入decoder中,使用LSTM对其解码并生成句子.模型非常直观,而且比常规的encoder-decoder框架还要简单一点(图像特征只在开始时刻输入了decoder,此后就不输入了),但是训练的过程非常讲究,因此取得了20…
最近接触了pLSA模型,该模型需要使用期望最大化(Expectation Maximization)算法求解. 本文简述了以下内容: 为什么需要EM算法 EM算法的推导与流程 EM算法的收敛性定理 使用EM算法求解三硬币模型 为什么需要EM算法 数理统计的基本问题就是根据样本所提供的信息,对总体的分布或者分布的数字特征作出统计推断.所谓总体,就是一个具有确定分布的随机变量,来自总体的每一个iid样本都是一个与总体有相同分布的随机变量. 参数估计是指这样一类问题——总体所服从的分布类型已知,但某些…
机器学习(包括监督学习, 无监督学习, 半监督学习与强化学习) 监督学习(包括分类与线性回归) 分类(标签的值为散列的"yes"或者"no", "good"或者"bad", "have"或者"don't have", 总之是bool值) 训练集: 特征1 特征2 特征3 标签 x x x yes x x x yes x x x no | | learn | get the sigmoid…
  EM算法是一种迭代算法,是一种用于计算包含隐变量概率模型的最大似然估计方法,或极大后验概率.EM即expectation maximization,期望最大化算法. 1. 极大似然估计   在概率模型中,若已知事件服从的分布或者其他概率模型的参数,那么我们可以通过计算得到某事件发生的概率.而在估计中,这些变成了方向过程:已知一组数据发生的结果,相当于获得了经验概率,通过这组数据假设模型服从什么分布,再通过经验概率求解模型参数.   比如统计学校学生身高服从的概率分布,抽样1000人得到他们的…
VC定理的证明 本文讨论VC理论的证明,其主要内容就是证明VC理论的两个定理,所以内容非常的枯燥,但对于充实一下自己的理论知识也是有帮助的.另外,VC理论属于比较难也比较抽象的知识,所以我总结的这些证明难免会有一些错误,希望各位能够帮我指出. (一)简单版本的VC理论. 给定一个集合系统$(U,\mathcal{S})$,VC理论可以解决以下问题.对于一个在$U$上的分布$P$,那么至少需要选择多少个样本(根据分布$P$选择),才能使对每个$S\in\mathcal{S}$,用样本估计出来的值以…
评:对于(3)几何上来看要满足性质$P$图像来看必须下凸.这样区间中点$x=2$处不可能为最大.(4)的形式让我想起在证明算术几何平均不等式时历史上著名的柯西反向归纳证明:…
摘要:RRCF是亚马逊发表的一篇异常检测算法,是对周志华孤立森林的改进.但是相比孤立森林,具有更为扎实的理论基础.文章的理论论证相对较为晦涩,且没给出详细的证明过程.本文不对该算法进行详尽的描述,仅对其中的关键定理或引理进行证明. Theorem 1: 对于点集S构成的树RCF(S),假设S的bounding box的边长为P(S),一次切分分离x1和x2的概率为. 注意到,切分后,任意一边的bounding box的边长的减少量的期望值为,该期望值满足如下不等式: 因此,每一次切分导致的新子集…
算法导论的第四章对于divide-conquer进行了阐述, 感觉这本书特别在,实际给出的例子并不多,更多其实是一些偏向数学性质的分析, 最重要的是告诉你该类算法分析的一般性策略. 估计 首先是估计算法的时间复杂度,这里我感觉大多数情况下该类算法的时间复杂度可以由两种策略来完成. master method 这种方式简单, 准确, 个人认为一般能用这种尽量使用这种. 对于常数 a >= 1, b > 1, T(n) = a T ( n / b ) + f(n), 也就是说算法T对于规模为n的问…
1.$\ell^p\ (1\leq p<\infty)$ 的对偶 求证: $\dps{\sex{\ell^p}^*=\ell^q\quad\sex{1\leq p<\infty,\ \frac{1}{p}+\frac{1}{q}=1}}$. 证明: 设 $1\leq p<\infty$. 一方面, 对 $y=\sed{\eta_k}_{k=1}^\infty\in \ell^q$, 由 H\"older 不等式, $$\bex \sev{\sum_{k=1}^\infty\xi…
一个问题:大多数情况下,M(hypothesis set的大小)是无穷大的,例如PLA算法.那么是不是我们的原则1就不能使用了? 我们试着做一些努力: Step1:寻找hypothesis set的effective number来代替M 什么意思呢?就是之前推导中,但是呢,例如在PLA算法中,h1和h2是如此的相像(考虑平面上的直线),所以,如果D对于h1是GOOD,那么对于h2也是GOOD.即:重叠部分太多,我们over-estimatinng了. 现在我们换一种思路.从DataSet的角度…
原文地址: http://www.cnblogs.com/xdp-gacl/p/3703876.html 闭包(closure)是Javascript语言的一个难点,也是它的特色, 很多高级应用都要依靠闭包实现.很早就接触过闭包这个概念了,但是一直糊里糊涂的,没有能够弄明白JavaScript的闭包到底是什么,有什么用,今天 在网上看到了一篇讲JavaScript闭包的文章(原文链接), 讲得非常好,这下算是彻底明白了JavaScript的闭包到底是个神马东东以及闭包的用途了,在此写出来和大家分…