设$n$为正整数,$a_1,a_2,\cdots,a_n;b_1,b_2,\cdots,b_n;A,B$都是正数, 满足$a_i\le b_i,a_i\le A,i=1,2,\cdots,n$ 且$\prod\limits_{i=1}^n{\dfrac{b_i}{a_i}}\le\dfrac{B}{A}$. 证明:$\prod\limits_{i=1}^n{\dfrac{b_i+1}{a_i+1}}\le\dfrac{B+1}{A+1}$(2018全国联赛加试题第一题) 记$\dfrac{b_i…