sklearn countvectorizer坑】的更多相关文章

但是如果修改为['驴 福 记 ( 阜通 店 )','...',...]执行vectorizer.fit_transform就正常.原因是,创建CountVectorizer实例时,有一个默认参数analyzer='word',在该参数作用下,词频矩阵构建过程会默认过滤所有的单字token,所以上面的'驴 福 记 ( 阜 通 店 )'以空格分隔以后全是单字,也就全被过滤了,所以就empty vocabulary了. 如果想针对单字进行tfidf计算,可以加上参数vectorizer = Count…
第三方库 pandas sklearn 数据集 来自于达观杯 训练:train.txt 测试:test.txt 概述 TF-IDF 模型提取特征值建立逻辑回归模型 代码 # _*_ coding:utf- _*_ # 简单文本分类实现 import time import pandas as pd from sklearn.linear_model import LogisticRegression from sklearn.feature_extraction.text import Coun…
1简述问题 使用countVectorizer()将文本向量化时发现,文本中长度唯一的字符串会被自动过滤掉,这对于我在做的情感分析来讲,一些表较重要的表达情感倾向的词汇被过滤掉,比如文本'没用的东西,可把我可把我坑的不轻,越用越觉得这个手机真的废'. 用结巴分词的精确模式分词,然后我用空格连接这些分词得到的句子是: '没用 的 东西 , 可 把 我 可 把 我 坑 的 不轻 , 越用 越 觉得 这个 手机 真的 废' 代码如下: def cut_word(sent): line=re.sub(r…
""" 理解sklearn中的CountVectorizer和TfidfVectorizer """ from collections import Counter import numpy as np from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer sentences = ["there is a dog dog", &…
文本数据预处理的第一步通常是进行分词,分词后会进行向量化的操作.在介绍向量化之前,我们先来了解下词袋模型. 1.词袋模型(Bag of words,简称 BoW ) 词袋模型假设我们不考虑文本中词与词之间的上下文关系,仅仅只考虑所有词的权重.而权重与词在文本中出现的频率有关. 词袋模型首先会进行分词,在分词之后,通过统计每个词在文本中出现的次数,我们就可以得到该文本基于词的特征,如果将各个文本样本的这些词与对应的词频放在一起,就是我们常说的向量化.向量化完毕后一般也会使用 TF-IDF 进行特征…
from sklearn.feature_extraction.text import CountVectorizer texts=["dog cat fish","dog cat cat","fish bird", 'bird'] cv = CountVectorizer() cv_fit=cv.fit_transform(texts) print(cv.get_feature_names()) print(cv_fit.toarray())…
CountVectorizer: CountVectorizer可以将文本文档集合转换为token计数矩阵.(token可以理解成词) 此实现通过使用scipy.sparse.csr_matrix产生了计数的稀疏表示. 如果不提供一个先验字典,并且不使用进行某种特征选择的分析器,那么特征的数量将与通过分析数据得到的词汇表的大小一致. 参数: input: 默认content 可选 filename.file.content 如果是filename,传给fit的参数必须是文件名列表 如果是file…
在SKLearn中,StratifiedShuffleSplit 类实现了对数据集进行洗牌.分割的功能.但在今晚的实际使用中,发现该类及其方法split()仅能够对二分类样本有效. 一个简单的例子如下: 1 import numpy as np 2 from sklearn.model_selection import StratifiedShuffleSplit 3 4 l4 = np.array([[1,2],[3,4],[1,4],[3,5]]) 5 l5 = np.array([0,1,…
基本步骤: 1.训练素材分类: 我是参考官方的目录结构: 每个目录中放对应的文本,一个txt文件一篇对应的文章:就像下面这样 需要注意的是所有素材比例请保持在相同的比例(根据训练结果酌情调整.不可比例过于悬殊.容易造成过拟合(通俗点就是大部分文章都给你分到素材最多的那个类别去了)) 废话不多说直接上代码吧(测试代码的丑得一逼:将就着看看吧) 需要一个小工具: pip install chinese-tokenizer 这是训练器: import re import jieba import js…
Text classifcation with Naïve Bayes In this section we will try to classify newsgroup messages using a dataset that can be retrieved from within scikit-learn. This dataset consists of around 19,000 newsgroup messages from 20 different topics ranging…