SD 一轮集训 day1 lose】的更多相关文章

神TM有是结论题,我讨厌结论题mmp. 杨氏矩阵了解一下(建议去维基百科). 反正就是推柿子,使劲推,最后写起来有一点小麻烦,但是在草稿纸(然鹅我木有啊)上思路清晰的话还是没问题的. #include<cstdio> #include<cctype> #include<algorithm> #define ll long long using namespace std; const int maxn=2000000,ha=1e9+7; inline int read(…
可以发现每条边只能选一次或者两次,并且最后每个点的度数(∑邻接边选的次数和)都是偶数(代表有欧拉回路). 然后根据题意列一个 n 行 m+1 列的01矩阵,每一行代表一个异或方程组(每个点的度数是偶数),每一列(除了最后一列)代表一个变量(每条边是不是选2次),最后一列0/1代表这个点目前的度数是偶数还是奇数. 最后我们要求的就是方程所有解中逆字典序最小的解. 乍一看肯定是毫无思路,但是做了 [HAOI2018] 反色游戏 之后,就感觉这两个东西还是有点点共性的. 我们高斯消元的过程肯定是 i…
目录 [欧拉回路+最小生成树]SD开车@山东2018省队一轮集训day1 PROBLEM 题目描述 输入 输出 样例输入 样例输出 提示 SOLUTION CODE [欧拉回路+最小生成树]SD开车@山东2018省队一轮集训day1 PROBLEM 题目描述 作为钦钦草原最绿的男人,杨某针每天都要开车巡视钦钦草原一圈. 钦钦草原由 n 个城市组成,m 条双向道路连接着它们.经过第 i 条道路要花费的时间是\(2^i\). 杨某针想要经过每条道路至少一次,在此基础上他想最小化他花费的时间.但作为…
LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set $ solution: $ 这一题的重点在于优先级问题,我们应该先保证总和最大,然后再保证某一个最小.于是我们分两部分贪心:(注意 $ tot $ 表示左右元素的异或和) 首先我们要让总和最大的话,我们只需要讨论 $ tot $ 的某一位为0的情况(如果为1,那么不管怎么分配两边的数都只能并且一定有一个数,使它这一位上含有1).对于 $ tot $ 的某一位为0的情况,我们肯定贪心的让两边都在这一位上含有…
有趣的思博套路题,想到了基本上加上个对线性基的理解就可以过了 首先考虑到这个把数分成两半的分别异或的过程不会改变某一位上\(1\)的总个数 因此我们求出所有数的\(\operatorname{xor}\),然后从高到低枚举每一位的值,分情况讨论: 如果这一位是\(1\),那么显然分配完后必然使得\(x_1,x_2\)中一个是\(0\),一个是\(1\) 如果这一位是\(0\),如果不是全\(0\),那么必然可以构造方案让\(x_1,x_2\)两数都是\(1\) 比较一下我们优先使\(x_1+x_…
LOJ BZOJ 明明做过一道(最初思路)比较类似的题啊,怎么还是一点思路没有. 记所有元素的异或和为\(s\),那么\(x_1+x_2=x_1+x_1\ ^{\wedge}s\). \(s\)是确定的.考虑从高位到低位枚举\(s\)的二进制位.若当前位\(s\)为\(1\),则\(x_1\)是\(0\)是\(1\)贡献相同:否则\(x_1\)这一位必须是\(1\)(如果能是\(1\)).这样可以满足\(x_1+x_2\)最大. 对于\(x_1\)最小的要求,就是在\(s\)为\(1\)时,\(…
题目大意 给出 \(n\) 个非负整数,将数划分成两个集合,记为一号集合和二号集合.\(x_1\) 为一号集合中所有数的异或和,\(x_2\) 为二号集合中所有数的异或和.在最大化 \(x_1 + x_2\) 的前提下,最小化 \(x_1\). \(n\leq 100000,0\leq a_i\leq {10}^8\) 题解 记 \(s=a_1\operatorname{xor} a_2\operatorname{xor} a_3\operatorname{xor} \cdots\operato…
传送门:https://loj.ac/problem/6102 [题解] 贴一份zyz在知乎的回答吧 https://www.zhihu.com/question/61218881 其实是经典问题 # include <stdio.h> # include <string.h> # include <iostream> # include <algorithm> using namespace std; typedef long long ll; typed…
非常强的构造题. 很显然的是我们要构造一个类似菊花图的东西,因为这样的话两点之间路径的点数会非常少,很容易满足第二个条件. 但是因为直接菊花图的话会不满足第一个条件,,,所以我们可以构造一个类菊花图. (题解太神了,%一发题解) #include<cstdio> #define ll long long using namespace std; int main(){ int k; scanf("%d",&k); printf("%d\n",k&…
可以发现把每一个 a[i] * b[i] 加到矩阵里去,就相当于 把一个 1*m 的向量伸缩后变成 n个再加到矩阵里去,所以答案就是远=原矩阵中线性线性无关组的个数. (而且好像一个矩阵横着消元和竖着消元 ,得到的线性无关组个数是一样的啊) #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring> #define ll long long using namespace…